If xexy + ye- xy = sin2x, then dydx at x = 0 is f

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

11.

If ab > - 1, bc > - 1 and ca > - 1, then  is

  • - 1

  • cot-1abc

  • 0


12.

If the function fx = x2 - k + 2x +2kx - 2 for x  22                               for x = 2 is continuous at x = 2, then k is equal to

  • - 12

  • - 1

  • 0

  • 12


Advertisement

13.

If xexy + ye- xysin2x, then dydx at x = 0 is

  • 2y2 - 1

  • 2y

  • y2 - y

  • y2 - 1


D.

y2 - 1

Given, xexy + ye- xy = sin2xOn differentiating w.r.t. x, we getexy + xexyxdydx + y + dydxe- xy - ye- xyxdydx + y = 2sinx . cosx x2exy + e- xy - xeye- xydydx + exy + xyexy - y2e- xy = sin2xOn putting x = 0, we get0 + e- 0 - 0dydxx = 0 + e0 + 0 - y2e- 0 = sin0 1dydxx  =0 + 1 - y2 = 0 dydxx = 0 = y2 - 1


Advertisement
14.

If y = tan-12x - 11 + x - x2, then dydx at x = 1 is equal to

  • 12

  • 23

  • 1

  • 32


Advertisement
15.

If f(x) = cos-12cosx + 3sinx13, then [f'(x)]2 is equal to

  • 1 + x

  • 1 + 2x

  • 2

  • 1


16.

If u = tan-11 - x2 - 1x and v = sin-1x, then dudv is equal to

  • 1 - x2

  • - 12

  • 1

  • - x


17.

If y = 11 + x + x2, then dydx is equal to

  • y2(2 + 2x)

  • - 1 + 2xy2

  • 1 + 2xy2

  • - y2(1 + 2x)


18.

If g(x) is the inverse of f(x) and f'(x) = 11 + x3, then g'(x) is equal to

  • g(x)

  • 1 + g(x)

  • 1 + {g(x)}3

  • 11 + gx3


Advertisement
19.

The equation of the tangent to the curve xa + yb = 1 at the point (x1, y1) is xax1 + yby1 = k. Then, the value of k is

  • 2

  • 1

  • 3

  • 3


20.

The slope of the normal to the curve x = t2 + 3t - 8 and y = 2t2 - 2t - 5 at the point (2, - 1) is

  • 67

  • - 67

  • 76

  • 76


Advertisement