If u(x) and u(x) are two independent solutions of the differentia

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

71.

The value of limx00x2cost2dxxsinx

  • 1

  • - 1

  • 2

  • loge2


72.

The curve y = cosx + y1/2 satisfies the differential equation

  • 2y - 1d2ydx2 + 2dydx2 + cosx = 0

  • d2ydx2 + 2dydx2 + cosx = 0

  • 2y - 1d2ydx2 -  2dydx2 + cosx = 0

  • 2y - 1d2ydx2 - dydx2 + cosx = 0


73.

The solution of the differential equation

dydx + yxlogex = 1x

under the condition y = 1 when x = e is

  • 2y = logex +1logex

  • y = logex +2logex

  • ylogex = logex +1

  • y = logex +e


74.

Let f(x) = maxx +x, x - x, where [x] denotes the greatest integer  x. Then, the values of - 33f(x)dx is

  • 0

  • 51/2

  • 21/2

  • 1


Advertisement
75.

Suppose M = 0π/2cosxx + 2dx, N = 0π/4sinxcosxx + 12dx. Then, the values of (M - N) equals

  • 3π + 2

  • 2π - 4

  • 4π - 2

  • 2π + 4


Advertisement

76.

If u(x) and u(x) are two independent solutions of the differential equation

d2ydx2 + b dydx + cy = 0,

then additional solution(s) of the given differential equation is(are)

  • y = 5u(x) + 8v(x)

  • y = c1{u(x) - v(x)} + c2v(x), c1 and c2 are arbitrary constants

  • y = c1u(x)v(x) + c2u(x)v(x), c1 and c2 are arbitrary constant

  • y = u(x)v(x)


A.

y = 5u(x) + 8v(x)

B.

y = c1{u(x) - v(x)} + c2v(x), c1 and c2 are arbitrary constants

We know that u(x) and v(x) are two independent solutions of the given differential equation, then their linear combination is also the solution of the given equation.

Here, we see that y = 5u(x) + 8v(x) is a linear combination and y = c1{u(x) - v(x)} + c2v(x) is also a linear combination of two independent solutions


Advertisement
77.

For two events A and B, let P(A) = 0.7 and P(B) = 0.6. The necessarily false statement(s) is/are

  • PA  B = 0.35

  • PA  B = 0.45

  • PA  B = 0.65

  • PA  B = 0.28


Advertisement