If a plane meets the coordinate axes at A, B and C such that the

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

21.

Let f'(x), be differentiable a. If f(1) = - 2 and f'(x) 2  x [1, 6], then

  • f(6) < 8

  • f(6)  8

  • f(6)  5

  • f(6)  5


22.

The minimum value of xlogx is

  • e

  • 1e

  • e2

  • e3


23.

If the points (1, 2, 3) and (2, - 1, 0) lie on the opposite sides of the plane 2x + 3y - 2z = k, then

  • k < 1

  • k > 2

  • k < 1 or k > 2

  • 1 < k < 2


24.

If x = 1cosx1 - cosx1 + sinxcosx1 + sinx + cosxsinxsinx1, then 0π4xdx is equal to

  • 14

  • 12

  • 0

  • - 14


Advertisement
25.

The triangle formed by the tangent to the curve f (x) = x2 + bx - b at the point (1, 1) and the coordinate axes lies in the first quadrant. If its area is 2, then the value of b is

  • - 1

  • 3

  • - 3

  • 1


Advertisement

26.

If a plane meets the coordinate axes at A, B and C such that the centroid of the triangle is (1, 2, 4), then the equation of the plane is

  • x + 2y + 4z = 12

  • 4x + 2y + z = 12

  • x + 2y + 4z = 3

  • 4x + 2y + z = 3


B.

4x + 2y + z = 12

Let the equation of the plane is,

xα + yβ + zγ = 1

Then, Aα, 0, 0, β0, β, 0 and 0, 0, γ are the points on the coordinate axes.

Since, the centroid of the triangle is (1, 2, 4).

   α3 = 1  α = 3  β3 = 2  β = 6and γ3 = 4  γ = 12 The equation of the plane is,   x3 + y6 + z12 = 1 4x + 2y + z = 12


Advertisement
27.

The volume of the tetrahedron included between the plane 3x + 4y - 5z - 60 = 0 and the coordinate planes is

  • 60

  • 600

  • 720

  • 400


28.

02πsinx + sinxdx is equal to

  • 0

  • 4

  • 8

  • 1


Advertisement
29.

The value of 02x2dx, where [.] is the greatest integer function, is

  • 2 - 2

  • 2 + 2

  • 2 - 1

  • 2 - 2


30.

If l (m,n) = 01tm1 + tndt, then the expression for l (m, n) in terms of l (m + 1, n + 1) is

  • 2nm + 1 - nm + 1 . l m + 1, n - 1

  • nm + 1 . l m + 1, n - 1

  • 2nm + 1 + nm + 1 . l m + 1, n - 1

  • mn + 1 . l m + 1, n - 1


Advertisement