The radius of a cylinder is increasing at the rate of 5 cm/min so

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

1.

If y = f(x2 + 2) and f'(3) = 5, then dydx at x = 1 is

  • 5

  • 25

  • 15

  • 10


2.

Let, f(x) = x2 + bx + 7. If f'(5) = 2f'72, then the value of b is

  • 4

  • 3

  • - 4

  • - 3


3.

If y = sin-12x1 - x2, - 12  x  12, then dydx is equal to

  • x1 - x2

  • 11 - x2

  • 21 - x2

  • 2x1 - x2


4.

A straight line parallel to the line 2x - y + 5 = 0 is also a tangent to the curve y2 = 4x + 5. Then, the point of contact is

  • (2, 1)

  • (- 1, 1)

  • (1, 3)

  • (3, 4)


Advertisement
5.

The function f(x) = 2x3 - 15x2 + 36x + 6 is strictly decreasing in the interval

  • (2, 3)

  • - , 2

  • (3, 4)

  • - , 3  4, 


6.

The slope of the tangent to the curve y2exy = 9e- 3x2 at (- 1, 3) is

  • - 152

  • - 92

  • 15

  • 152


Advertisement

7.

The radius of a cylinder is increasing at the rate of 5 cm/min so that its volume is constant. When its radius is 5 cm and height is 3 cm, then the rate of decreasing of its height is

  • 6 cm/min

  • 3 cm/min

  • 4 cm/min

  • 5 cm/min


A.

6 cm/min

Given, drdt = 5 cm/min Volume of cylinder is given as,             V = πr2h               ...iOn differentiating both sides w.r.t. t, we get         dVdt = 2πrdrdt . h      ...iiAgain, differentiating Eq. (i) w.r.t. t, we get         dVdt = πr2dhdt         ...iiiFrom Eqs. (ii) and (iii)  2πrdrdt . h = πr2dhdt 2drdt . h = rdhdt 2 . 5 . 3 = 5dhdt        dhdt = 6 cm/min


Advertisement
8.

The function fx = 2x2 - 1,     if 1  x  4151 - 30x, if 4 < x  5 is not suitable to apply Rolle's theorem, since

  • f(x) is not continuous on [1, 5]

  • f(1) f(5)

  • f(x) is continuous only at x = 4

  • f(x) is not differentiable at x = 4


Advertisement
9.

The slope of the normal to the curve y = x21x2 at (- 1, 0) is

  • 14

  • - 14

  • 4

  • - 4


10.

The minimum value of sin(x) + cos(x) is

  • 2

  • - 2

  • 12

  • - 12


Advertisement