An integrating factor of the differential equation sinxdydx&

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

41.

Area bounded by the curves y = ex, y = e- x and the straight line x = 1 is (in sq units)

  •  e + 1e + 2

  • e + 1e - 2

  • e - 1e + 2


42.

The value of the integral 1e1 + logx3xdx is equal to

  • 14

  • 12

  • 34

  • e


43.

The value of the integtral 01x31 + x8dx is equal to

  • π8

  • π4

  • π16

  • π6


44.

The value of 24logttdt is

  • 12log22

  • 52log22

  • 32log22

  • log22


Advertisement
45.

The solution of the differential equation (kx - y2 ) dy = (x2 - ky) dx is

  • x3 - y3 = 3kxy + C

  • x3 + y3 = 3kxy + C

  • x2 - y2 = 2kxy + C

  • x2 + y2 = 2kxy + C


46.

The solution of the differential equation dydx = ex + 1 is

  • y = e+ C

  • y = x + ex + C

  • y = xex + C

  • y = x(ex + 1) + C


47.

The order and degree of the differential equation d2ydx2 + dydx32 = y are respectively

  • 1, 1

  • 1, 2

  • 1, 3

  • 2, 2


Advertisement

48.

An integrating factor of the differential equation sinxdydx + 2ycosx = 1 is

  • sin2(x)

  • 2sinx

  • logsinx

  • 1sin2x


A.

sin2(x)

Given differential equation can be rewritten as,

dydx + 2ycotx = cscx

It is a linear differential equation of the form dydx +Py = Q

Here, P = 2cotx and Q = cscx    IF = ePdx = e2cotxdx            = e2logsinx = elogsin2x = sin2x


Advertisement
Advertisement
Advertisement