Equation of a plane passing through (- 1, 1, 1) and (1, - 1, 1) a

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

31.

Let f(x) be differentiable on the interval (0, ) such that f(1) =1 and  for each x > 0. Then, f(x) is equal to

  • 13x + 23x2

  • - x3 + 4x23

  • - 1x

  • - 1x + 2x2


32.

If A = 41126, then A-1 is equal to

  • - 1- 11232

  • 3- 112- 12

  • 32- 1- 112

  • None of these


33.

Let fx = sin3x12cos3x2 + sin3x22cos3x- 12cos23x2 -  sin23x2tan3x41 + 2tan3x. Then, the value of f'(x) at x = (2n + 1) π, n  I (the set of integers) is equal to

  • (- 1)n

  • (- 1)+ 1

  • 3

  • 9


34.

If the function f · f . [1, )  [1, ) is defined by f(x) = 2x(x - 1), then f-1(x) is defined by

  • 12xx - 1

  • 121 ± 4log2x

  • 121 - 1 - 4log2x

  • None of these


Advertisement
35.

The number of points, where f(x) = [sin(x) + cos(x)] (where [] denotes the greatest integerfunction) and x  (0, 2) is not continuous, is

  • 3

  • 4

  • 5

  • 6


36.

The value of cot-11 + sinx + 1 - sinx1 + sinx - 1 - sinx is equal to

  • x3

  • x4

  • 1

  • x2


37.

The value of 1ab + c1bc+ a1ca +b is

  • 0

  • a + b + c

  • abc

  • 1


38.

The angle between planes 2x - y + z = 6 and x + y + 2z = 8 is

  • 30°

  • 60°

  • cos-132

  • sin-132


Advertisement
39.

According to Simpson's rule, the value of 17dxx is

  • 1.358

  • 1.958

  • 1.625

  • 1.458


Advertisement

40.

Equation of a plane passing through (- 1, 1, 1) and (1, - 1, 1) and perpendicular to x + 2y + 2z = 5 is

  • 2x + 3y - 3z + 3 = 0

  • x + y + 3z - 5 = 0

  • 2x+ 2y - 3z + 3 = 0

  • x + y + z - 3 = 0


C.

2x+ 2y - 3z + 3 = 0

Equation of plane passing through (-1, 1, 1) is       a (x + 1) + b(y - 1) + c (z - 1) = 0       ...(i)Also, it ts passing through (1,- 1, 1) a1 + 1 +b- 1 - 1 +c1 - 1 = 0                                  2a - 2b + 0c = 0      ...(ii)Also, required equation of plane (i)is perpendicular to x + 2y + 2z = 5.       a × 1 + b × 2 +c × 2 = 0                         a +2b +2c = 0               ...iiiEqs (ii) and (iii) are identical. a- 4 - 0 = - b4 - 0 = c4 + 2       a- 4 = b- 4 = c6       a- 2 = b- 2 = c3 = λ a = - 2λ, b = - 2λ, c = 3λOn putting the values of a, b and c in Eq. (1), we get- 2λx +1 - 2λy - 1 + 3λz - 1 = 0    λ- 2x - 2 - 2y + 2 +3z - 3 = 0                       - 2x - 2y + 3z - 3 = 0                            2x +2y - 3z +3 = 0


Advertisement
Advertisement