If the direction cosines of two lines are given by l + m + n = 0

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

11.

If a normal chord at a point t on the parabola y2 = 4ax subtends a right angle at the vertex, then t equals to

  • 1

  • 2

  • 2

  • 3


12.

The slopes of the focal chords of the parabola y2 = 32x, which are tangents to the circle x2 + y2 = 4, are

  • 12, - 12

  • 13, - 13

  • 115, - 115

  • 25, - 25


13.

If tangents are drawn from any point on the circle x2 + y= 25 to the ellipse x216 + y29 = 1,  then the angle between the tangents is

  • 2π3

  • π4

  • π3

  • π2


14.

An ellipse passing through has 42, 26 foci at (- 4, 0) and (4, 0). Then, its eccentricity

  • 2

  • 12

  • 12

  • 13


Advertisement
15.

If the line joining A(1, 3, 4) and B is divided by the point    (- 2, 3, 5) in the ratio 1 : 3, then B is

  • (- 11, 3 , 8)

  • (- 11, 3 , - 8)

  • (8, 12 , 20)

  • (13, 6 , - 13)


Advertisement

16.

If the direction cosines of two lines are given by l + m + n = 0 and l- 5m2 + n2 = 0, then the angle between them is

  • π2

  • π6

  • π4

  • π3


D.

π3

Given direction cosines of two lines arel + m + n = 0and l2 + m2 + n2 = 1l1, m1, n1 = - 26, 16, - 16and l2, m2, n2 = 16, 16, - 26 = - 26 × 16 + 16 × 16 - 26× 16 cosθ = - 26 + 16 - 26= - 36= 12       θ = 60° = π3


Advertisement
17.

A hyperbola passing through a focus of the  ellipsex2169 + y225 = 1. Its transverse and conjugate axes coincide respectively with the major and minor axes of the ellipse. The product of eccentricities is 1. Then, the equation of the hyperbola is

  • x2144 - y29 = 1

  • x2169 - y225 = 1

  • x2144 - y225 = 1

  • x2125 - y29 = 1


18.

If A(3, 4, 5), B(4, 6, 3), C( - 1, 2, 4) and D(1, 0, 5) are such that the angle between the lines DC and AB is θ , then cosθ is equal to

  • 79

  • 29

  • 49

  • 59


Advertisement
19.

If f :- 2,  2  R is defined by fx = 1 + cx - 1 - cxx for - 2  x  0x + 3x + 1 for 0  x  2continuous on - 2,  2, then c is equal to

  • 23

  • 3

  • 32

  • 32


20.

If fx = xtan-1x, then limx1fx - f1x - 1 = ?

  • π +34

  • π4

  • π + 14

  • π +24


Advertisement