If a^, b^ and c^ are non-coplanar vectors and

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

71.

The differential equation of the family of parabolas with vertex at (0, - 1) and having axis along the Y-axis is

  • yy' + 2xy + 1 = 0

  • xy' + y + 1 = 0

  • xy' - 2y - 2

  • xy' - y - 1 = 0


72.

The solution of xdydx = y + eyx with y1 = 0 is

  • 1 = logx + e yx

  • logx = e - yx

  • 1 = 2logx + e - yx

  • logx + e - yx = 1


73.

The solution of cos(y) + (xsin(y) - 1)dy/dx = 0 is, 

  • xsecy = tany + C

  • tany - secy = Cx

  • tany + secy = Cx

  • xsecy + tany = C


74.

Three non-zero non-collinear vectors a^, b^ and c^ are such that a^ + 3b^ is collinear with c^, while c^ is 3b^ + 2c^ collinear with a. Then a^ + 3b^ + 2c^ equals

  • 0

  • 2a^

  • 3b^

  • 4c^


Advertisement
Advertisement

75.

If a^, b^ and c^ are non-coplanar vectors and if d^ is such that d^ = 1xa^ + b^ + c^ and d^ = 1yb^ + c^ + d^ where x and y are non-zero real numbers, then 1xya^ + b^ + c^ + d^ equals to

  • 3c

  • - a

  • 0

  • 2a


C.

0

Given, d^ = 1xa^ + b^ + c^and d^ = 1yb^ + c^ + d^ a + b + c - xd = 0 and b + c + d - yd = 0  a +b + c + d = 0 1xya^ + b^ + c^ + d^ = 1xy0 = 0


Advertisement
76.

The angle between the lines r^ = 2i^ - 3j^ + k^ + λi^ + 4j^ + 3k^ and r^ = i^ - j^ + 2k^ + μi^ + 2j^ - 3k^ is

  • π2

  • cos-1991

  • cos-1784

  • π3


77.

If a, b and c are vectors with magnitudes 2, 3 and 4 respectively, then the best upper bound of a^ - b^2 + b^ - c^2 + c^ - a^2 among the given values is

  • 93

  • 97

  • 87

  • 90


78.

If x, y and z are non-zero real numbers and a^ = xi^ + 2j^b^ = yj^ + 3k^ and c^ = xi^ + yj^ + zk^ are such that a^ × b^ = zi^ - 3j^ + k^, then a^ b^ c^ equals to

  • 3

  • 10

  • 9

  • 6


Advertisement
79.

If x is real, then the minimum value of y = x2 - x + 1x2 + x + 1 is

  • 3

  • 13

  • 12

  • 2


80.

The locus of the centroid of the triangle with vertices at (acos(θ), asin(θ)), (bsin(θ), - bcos(θ)) and (1, 0) is (here, θ is a parameter)

  • 3x + 12 + 9y2 = a2 + b2

  • 3x - 12 + 9y2 = a2 - b2

  • 3x - 12 + 9y2 = a2 + b2

  • 3x + 12 + 9y2 = a2 - b2


Advertisement