The locus of the centroid of the triangle with vertices at (acos(

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

71.

The differential equation of the family of parabolas with vertex at (0, - 1) and having axis along the Y-axis is

  • yy' + 2xy + 1 = 0

  • xy' + y + 1 = 0

  • xy' - 2y - 2

  • xy' - y - 1 = 0


72.

The solution of xdydx = y + eyx with y1 = 0 is

  • 1 = logx + e yx

  • logx = e - yx

  • 1 = 2logx + e - yx

  • logx + e - yx = 1


73.

The solution of cos(y) + (xsin(y) - 1)dy/dx = 0 is, 

  • xsecy = tany + C

  • tany - secy = Cx

  • tany + secy = Cx

  • xsecy + tany = C


74.

Three non-zero non-collinear vectors a^, b^ and c^ are such that a^ + 3b^ is collinear with c^, while c^ is 3b^ + 2c^ collinear with a. Then a^ + 3b^ + 2c^ equals

  • 0

  • 2a^

  • 3b^

  • 4c^


Advertisement
75.

If a^, b^ and c^ are non-coplanar vectors and if d^ is such that d^ = 1xa^ + b^ + c^ and d^ = 1yb^ + c^ + d^ where x and y are non-zero real numbers, then 1xya^ + b^ + c^ + d^ equals to

  • 3c

  • - a

  • 0

  • 2a


76.

The angle between the lines r^ = 2i^ - 3j^ + k^ + λi^ + 4j^ + 3k^ and r^ = i^ - j^ + 2k^ + μi^ + 2j^ - 3k^ is

  • π2

  • cos-1991

  • cos-1784

  • π3


77.

If a, b and c are vectors with magnitudes 2, 3 and 4 respectively, then the best upper bound of a^ - b^2 + b^ - c^2 + c^ - a^2 among the given values is

  • 93

  • 97

  • 87

  • 90


78.

If x, y and z are non-zero real numbers and a^ = xi^ + 2j^b^ = yj^ + 3k^ and c^ = xi^ + yj^ + zk^ are such that a^ × b^ = zi^ - 3j^ + k^, then a^ b^ c^ equals to

  • 3

  • 10

  • 9

  • 6


Advertisement
79.

If x is real, then the minimum value of y = x2 - x + 1x2 + x + 1 is

  • 3

  • 13

  • 12

  • 2


Advertisement

80.

The locus of the centroid of the triangle with vertices at (acos(θ), asin(θ)), (bsin(θ), - bcos(θ)) and (1, 0) is (here, θ is a parameter)

  • 3x + 12 + 9y2 = a2 + b2

  • 3x - 12 + 9y2 = a2 - b2

  • 3x - 12 + 9y2 = a2 + b2

  • 3x + 12 + 9y2 = a2 - b2


C.

3x - 12 + 9y2 = a2 + b2

Given, Vertices of a triangle are

A(acos(θ), asin(θ)), B(bsin(θ), - bcos(θ)) and C(1, 0)

 Let the locus of centroid be x, y x, y = acosθ + bsinθ + 13,  bcosθ + 03 x = acosθ + bsinθ + 13and y =   asinθ - bcosθ3 acosθ + bsinθ = x- 1and asinθ - bcosθ = 3y a2cos2θ + b2cos2θ + 2absinθcosθ  = 3x - 12and  a2sin2θ + b2cos2θ - 2absinθcosθ = 9y2

On adding, we geta2sin2θ + cos2θ + b2cos2θ + sin2θ  = 3x - 12 + 9y2 a2 + b2 = 3x - 12 + 9y2which Is the required locus of a point


Advertisement
Advertisement