For a matrix A = 100210321, if U1, U2, and U3. are

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

61.

If a is an imaginary cube root of unity, then the value of the determinant

 is

  • - 2w

  • - 3w2

  • - 1

  • 0


62.

be two given curves. Then, angle between the tangents to the curves at any point of their intersection is

  • 0

  • π

  • π2

  • π4


63.

The value of 2cot-112 - cot-143 is

  • - π8

  • 3π2

  • π4

  • π2


64.

The integrating factor of the differential equation

dydx + 3x2tan-1y - x31 + y2 = 0 is

  • ex2

  • ex3

  • e3x2

  • e3x3


Advertisement
65.

If y = e- xcos2x, then which of the following differential equation is satisfied?

  • d2ydx2 + 2dydx + 5y = 0

  • d2ydx2 + 5dydx + 2y = 0

  • d2ydx2 - 5dydx - 2y = 0

  • d2ydx2 + 2dydx - 5y = 0


Advertisement

66.

For a matrix A = 100210321, if U1, U2, and U3. are 3 × 1 column matrices satisfying AU1 = 100, AU2 = 230, AU3 = 231 and U is 3 × 3  matrix whose columns are U1, U2, and U3.  Then, sum of the elements of U- 1

  • 6

  • 0

  • 1

  • 2/3


B.

0

Let 

Ui = aibici, where i = 1, 2, 3 AU1 = 100210321a1b1c1 a12a1 + b13a1 + 2b1 + c1 = 100           AU1 = 100

 a1 = 1, 2a1 + b1 = 0 2 + b1 = 0 b1 = - 2and 3a1 + 2b1 + c1 = 0 3 + 2- 2 + c1 = 0 3 - 4 + c1 = 0 c1 = 1

Similarly, AU2100210321a2b2c2

a22a2 + b23a2 + 2b2 + c2 = 230        AU2 = 230

 a2 = 2 and 2a2 + b2 = 3 2 × 2 + b2 = 3 4 + b2 = 3 b2 = - 1and 3a2 + 2b2 + c2 = 0 3 × 2 +2- 1 + c2 = 0 6 - 2 + c2 = 0 c2 = - 4

Now, AU3100210321a3b3c3

a32a3 + b33a3 + 2b3 + c3 = 230        AU3 = 230

 a3 = 2 and 2a3 + b3 = 3 2 × 2 + b3 = 3 4 + b3 = 3 b3 = - 1and 3a3 + 2b3 + c3 = 1 3 × 2 +2- 1 + c3 = 1 6 - 2 + c3 = 1 c2 = - 3

 U = 122- 2- 1- 11- 4- 3 U = 13 - 4 - 26 + 1 + 28 + 1           = - 1 - 14 + 18 = 3Also, adjU = - 1- 79- 2- 560- 33T = - 1- 20- 7- 5- 3963 U- 1 = 1UadjU

 U- 1 = - 13- 230- 73- 53- 1321

Hence, the sum of all elements of u- 1 is 0


Advertisement
67.

Let f be any continuously differentiable function on [a, b] and twice differentiable on (a, b) such that f(a) = f"(a) = 0 and f(b) = 0. Then,

  • f''(a) = 0

  • f'(x) = 0 for some x  a, b

  • f''(x)  0 for some x  a, b

  • f'''x = 0 for some x  a, b


68.

A relation p on the set of real number R is defined as {xρy: xy > 0}. Then, which of the following is/are true?

  • ρ is reflexive and symmetric

  • ρ is symmetric but not reflexive

  • ρ is symmetric and transitive

  • ρ is an equivalence relation


Advertisement
69.

Let f : R  R  be such that f(2x - 1) = f(x) for all x  R. If f is continuous at x = 1 and f(1) = 1, then

  • f(2) = 1

  • f(2) = 2

  • f is continuous only at x = 1

  • f is continuous at all points


70.

The value of limx22x3t2x - 2dt is

  • 10

  • 12

  • 18

  • 16


Advertisement