Two lines of regressions are given by x + 2y - 5 = 0 and 2x + ky

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

1.

The sum of the real solutions of equation 2x2 + 51 = 1 + 20x is

  • 5

  • 24

  • 0

  • None of these


2.

The quadratic equation whose roots are 13 + 2 and 13 - 2, will be

  • 7x2 - 6x + 1 = 0

  • 6x2 - 7x + 1 = 0

  • x2 - 6x + 7 = 0

  • x2 - 7x + 6 = 0


3.

Who said, "Number of transistors per square inch on integrated circuits double every year, since their invention will continue to do so in the foreseable future"?

  • Alan Turing

  • Jon Von Neumann

  • Herbert Simon

  • Gorden Moore


4.

The point on the straight line y = 2x + 11 which is nearest to the circle 16(x2 + y) + 32x - 8y - 50 = 0, is

  • 92, 2

  • 92, - 2

  • - 92, 2

  • - 92, - 2


Advertisement
5.

The locus of the extrimities of the latusrectum of the family of ellipses b2x2 + y2 = a2b2 having a given major axis, is

  • x2 ± ay = a2

  • y2 ± bx = a2

  • x2 ± by = a2

  • y2 ± ax = b2


6.

In ABC, if 3a = b + c, then value of cotB2cotC2 will be

  • 1

  • 2

  • 3

  • 2


7.

API stands for

  • Access Programming Interface

  • Android Programming Interface

  • Application Programming Interface

  • None of the above


8.

Let A and B be two events of an experiment PA = 14, PA  B = 12, then the value of PBAC is

  • 23

  • 13

  • 56

  • 12


Advertisement
9.

If z = ilog2 - 3, then the value of cos(Z) will be

  • i

  • 2i

  • 1

  • 2


Advertisement

10.

Two lines of regressions are given by x + 2y - 5 = 0 and 2x + ky - 8 = 0. If σx2 = 12 and σy2 = 4, then the value of k is

  • 1

  • 2

  • 3

  • 4


C.

3

Given lines of regressions arex +2y - 5 = 0and 2x +ky - 8 = 0Rewriting above equations,y = - 12x + 52 and x = - k2y + 4Hence, byxr1 = - 12 and bxyr2 =  - k2 r2 = byx × bxy     r2 = - 12y × - k2     r2 = k4  r = k2Given σx2 = 12 and σy2 = 4     σx = 12 and σy = 2We know that,        bxy = xσy   - k2 = k × 1222 - 2k = 12k   4k2 = 12k       k = 3


Advertisement
Advertisement