The common roots of the equations z3 + 2z2 

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMatch The Following

1.

Match the following columns.
       
A The centroid of the triangle formed by (2, 3, - 1), (5, 6, 3), (2, -3 ,1) is p (2, 2, 2)
B The circumcentre of the triangle formed by (1,2, 3) (2, 3, 1), (3, 1, 2) is q (3, 1, 4)
C The orthocentre of the triangle formed by (2, 1, 5), (3, 2, 3), (4, 0, 4) is r (1, 1, 0)
D The incentre of the triangle formed by (0, 0, 0), (3, 0, 0), (4, 0, 4) is  s (3, 2, 1)
E The incentre of the triangle formed by (0, 0, 0), (3, 0, 0), (4, 0, 4) is t (0, 0, 0)

 

A. A B C D (i) s p q r
B. A B C D (ii) p q r s
C. A B C D (iii) s r q r
D. A B C D (iv) s p t r

 Multiple Choice QuestionsMultiple Choice Questions

2.

If f : R  R, g : R  R are defined by fx = 5x - 3, gx = x2 + 3, then gof - 13 = ?

  • 253

  • 11125

  • 925

  • 25111


3.

If A = x  Rlπ4  x π3 and fx = sinx - x, then fA =?

  • 32 - π3, 12 - π4

  • - 12 - π4, 32 - π3

  • - π3, - π4

  • π4, π3


4.

The value of the sum 1 · 2 . 3 + 2 . 3 . 4 + 3 . 4 . 5 +  ... upto n terms is equal to

  • 16n22n2 + 1

  • 16n2 - 12n - 12n + 3

  • 18n2 + 1n2 +5

  • 14nn +1n + 2n + 3


Advertisement
5.

k = 16 sin27 - icos27 = ?

  •  - 1

  • 0

  •  - i

  • i


6.

If ω is a complex cube root of unity, thenω13 + 29 + 427 +     + ω12 + 38 + 932 +    = ?

  • 1

  • - 1

  • ω

  • i


Advertisement

7.

The common roots of the equations z3 +2z2 + 2z + 1 = 0,  z2014 + z2015 + 1 = 0 are

  • ω, ω2

  • 1, ω, ω2

  • - 1, ω, ω2

  • - ω, - ω2


A.

ω, ω2

The given equationz3 +2z2 + 2z + 1 = 0,  z2014 + z2015 + 1 = 0 can be written asz + 1z2 + z + 1 = 0Since, its roots are - 1, ω, ω2Let fz = z2014 + z2015 + 1 = 0Put z = - 1, ω, ω2 respectively, we getf - 1 = - 12014 +  - 12015 + 1 = 0= 1  0Therefore, - 1 is not a root of the equation f(z) = 0Again, f(ω) = ω2014 + ω2015 + 1 = 0= ω3671ω + ω3671ω2 + 1 = 0 ω + ω2 + 1 ω2 + ω + 1 = 0 0 = 0Therefore, ω is a root of the equation f(z) = 0Similarly,f(ω3) =ω22014 + ω32015 + 1 = 0 ω31342 . ω2 + ω31343ω 1 = 0 ω2 + ω +1 = 0 0 = 0Hence, ω and ω2 are the common roots


Advertisement
8.

If a, b, c are distinct and the roots of (b - c)x2 + (c - a)x + (a - b) = 0 are equal, then a, b and c are in

  • anthmet1c progression

  • geometnc progression

  • harmonic progression

  • arithmetico-geometnc progression


Advertisement
9.

If the roots of x3 - kx2 + 14x - 8 = 0 are in geometric progression, then k is equal to

  • - 3

  • 7

  • 4

  • 0


10.

If the harmonic mean of the roots of 2x2 - bx + 8 - 2d = 0 is 4, then the value of b is

  • 2

  • 3

  • 4 - 5

  • 4 + 5


Advertisement