The particular solution of the differential equationy1 +&nbs

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

21.

The acute angle between the line r = i^ + 2j^ + k^ + λi^ + j^ + k^ and the plane 2i^ - j^ + k^ = 5

  • cos-123

  • sin-123

  • tan-123

  • sin-123


22.

The area of the region bounded by the curve y = 2x - x2 and X - axis is

  • 23 sq units

  • 43 sq units

  • 53 sq units

  • 83 sq units


23.

If fxlogsinxdx = loglogsinx + c, then f(x) is equal to

  • cot(x)

  • tan(x)

  • sec(x)

  • csc(x)


24.

If A and B are foot of perpendicular drawn from point Q(a, b, c) to the planes yz and zx, then equation of plane through the points A, B and O is

  • xa + yb - zc = 0

  • xa - yb + zc = 0

  • xa - yb - zc = 0

  • xa + yb + zc = 0


Advertisement
25.

If a = i^ + j^ - 2k^, b = 2i^ - j^ + k^ and c = 3i^ - k^ and c = ma + nb, then m + n is equal to

  • 0

  • 1

  • 2

  • - 1


26.

0π2secxnsecxn +cscxndx is equal to

  • π2

  • π3

  • π4

  • π6


27.

If the probability density function of a random variable X is given as
xi - 2 - 1 0 1 2
P(X = xi) 0.2 0.3 0.15 0.25 0.1

then F(0) is equal to

  • P(X < 0)

  • P(X > 0)

  • 1 - P(X > 0)

  • 1 - P(X < 0)


Advertisement

28.

The particular solution of the differential equation

y1 + logxdxdy - xlogx = 0, when, x = e, y = e2 is

  • y = exlog(x)

  • ey = xlog(x)

  • xy = elog(x)

  • ylog(x) = ex


A.

y = exlog(x)

Given, differential equation is y1 + logxdxdy - xlogx = 0     1 + logxdxxlogx = dyy 1xlogx + 1xdx = 1ydyOn integrating both sides, we get

1xlogx + 1xdx = 1ydyPut logx = t   1xdx = dt 1tdt + 1xdx = 1ydy    logt + logx = logy + logc  logtx = logyc         tx = yc xlogx = ycWhen     x = e and y = e2 eloge = e2c  e × 1 = e2c          c = 1e xlogx = ye         y = exlogx


Advertisement
Advertisement
29.

M and N are the mid-points of the diagonals AC and BO respectively of quadrilateral ABCD, then AB + AD + CB + CD is equal to

  • 2MN

  • 2NM

  • 4MN

  • 4NM


30.

If sinx  is the integrating factor (IF) of the linear differential equation dydx + Py = Q, then P is

  • logsinx

  • cosx

  • tanx

  • cotx


Advertisement