The solution of the differential equation is
e- y = 2ex + x- 33 + C
e- y = 2ex + x33 + C
ey = 2e- x + x33 + C
A.
ey = 2ex + x33 + C
Given, dydx = 2ex - y + x2e- y⇒ dydx = 2ex . 1ey + x2 . 1ey⇒ dydx = 1ey2ex + x2⇒ eydy = 2ex + x2dxOn Integrating both sides, we get ∫eydy = ∫2ex + x2dx ey = 2ex + x33 + C
The solution of the differential equation x + 2y3dydx = Y is
y3 + Cx = y
xy42 + xy = Cy
y3 + Cy = x
x + 2y3 = y + C