The tangents to curve y = x3 - 2x2 + x - 2 which are parallel to

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

Advertisement

11.

The tangents to curve y = x3 - 2x2 + x - 2 which are parallel to straight line y = x, are

  • x + y = 2 and x - y = 8627

  • x - y = 2 and x - y = 8627

  • x - y = 2 and x + y = 8627

  • x + y = 2 and x + y = 8627


B.

x - y = 2 and x - y = 8627

Given,        y = x3 - 2x2 + x - 2On differentiating both sides w. r. t. x, we get     dydx = 3x2 - 4x +1and   y = x dydx = 1 Slope of tangent will be 3x2 - 4x +1Since, the tangent is parallel to line y = x 3x2 - 4x +1 = 1        3x2 - 4x = 0       x3x - 4 = 0                     x = 0, 43When x = 0, then y = - 2When x = 43, then y=- 5027Now, equation of tangents at point (0, - 2) is

   y - y1 = dydxx - x1 y + 2 = 1x - 0 y + 2 = x x - y = 2             ...iand equation of tangent at point 43, - 5027 is   y - y1 = dydxx - x1  y + 5027 = x - 43 x - y = 5027 + 43 x - y = 50 + 3627 x - y = 8627         ...iiHence, x - y = 2 and x - y = 8627 are required equations of the tangents.


Advertisement
12.

The value of 012sin-1x1 - x232dx is

  • π2 - log2

  • π4 - 12log2

     

  • π4 + 12log2

  • π - 12log2


13.

Integral of 12 + cosx

  • 13tan-112tanx +C

  • 23tan-113tanx2 +C

  • - sinxlog2 + cosx + C

  • sinxlog2 + cosx + C


14.

A plane is flying horizontally at a height of 1 km from ground. Angle of elevation of the plane at a certain instant is 60°. After 20 s, angle of elevation is found 30°. The speed of plane is

  • 1003 m/s

  • 2003 m/s

  • 1003 m/s

  • 2003 m/s


Advertisement
15.

Probability of solving a particular question by person A is 1/3 and probability ofsolving that question by person B is 2/5. what is the probability of solving that question by atleast one of them ?

  • 35

  • 79

  • 25

  • 23


16.

The centre of gravity (centre of mass) of a rod (of length L), whose linear mass density varies as the square of the distance from one end is at

  • 3L5

  • 2L5

  • L3

  • 3L4


17.

Three forces each of magnitude F are applied along the edges of a regular hexagon as shown in the figure. Each side of hexagon is a. What is the resultant moment (torque) of these three forces about centre O ?

  • 332aF

  • 12aF

  • 3aF

  • 32aF


18.

The coordinates of a moving point particle in a plane at time t is given by x = a(t + sin(t)), y = a(1 - cos(t)). The magnitude of acceleration of the particle is acceleration ofthe particle is

  • 2a

  • 32a

  • a

  • 3a


Advertisement
19.

Two vectors A = 3 and B = 4 are perpendicular. Resultant of both these vectors is R. The projection of the vector B on the vector R is

  • 5

  • 1.25

  • 3.2

  • 2.4


20.

A vector R is given by R = A x (B x C), which of the following is true ?

  • R must be perpendicular to 8

  • R is parallel to A

  • R must be parallel to B

  • None of these


Advertisement