If f(x) = fx = x, gx = ex -&nb

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

41.

For n = 4, using trapezoidal rule, the value of 02dx1 + x will be

  • 1.116625

  • 1.1176

  • 1.1180

  • None of these


42.

The value of 05dx1 + x2 by chosing six sub-intervals and by using Simpson's rule will be

  • 1.3562

  • 1.3662

  • 1.3456

  • 1.2662


43.

If G and G' are respectively centroid of ABC and A' B' C', then AA' + BB' + CC' is equal to

  • 2GG'

  • 3GG'

  • 23GG'

  • 13GG'


44.

If a = 3i^ - 4j^ + 5k^, b = i^ + j^ + k^ and c = - 2i^ + 3j^ - 5k^, and if [·] is the least integer function, then [a + b + c] is equal to

  • 1

  • 2

  • 3

  • 0


Advertisement
45.

If a = - i^ + j^ + k^ and b = 2i^ + k^, then the vector satisfyin the following conditions

(i) it is coplanar witha and b,

(ii) it is perpendicular to b and

(iii) a · c = 7, is

  • - i^ + 2j^ + 2k^

  • - 32i^ + 52j^ + 3k^

  • - 3i^ + 5j^ + 6k^

  • - 6i^ + k^


46.

If the vectors b = tanα, - 1, 2sinα2 and c = tanα, tanα,  - 3sinα2 are orthagonal and  a vector a = 1, 3, sin2α makes an obtuse angle with the Z-axis, then the value of α is

  • 4n + 2π + tan-12

  • 4n + 2π - tan-12

  • 4n + 1π + tan-12

  • 4n + 1π - tan-12


47.

If cos4x + 1cotx - tanxdx = Acos4x + B, then the value of A is

  • 12

  • 18

  • - 18

  • 14


Advertisement

48.

If f(x) = fx = x, gx = ex - 1 and fogxdx = Afogx + Btan-1fogx + C, then the value of A + B is

  • 1

  • 2

  • 3

  • None of these


D.

None of these

We have, fx = x, gx = ex - 1 fogx = fgx = fex - 1 fogx = ex - 1                              ...iLet I = fogxdx       = ex - 1dx       from Eq. (i)       = ex - 1ex - 1dx       = exex - 1dx - 1ex - 1dx     ...iiConsider I1 = exex - 1dxand         I2 = 1ex - 1dxNow, I1 = exex - 1dxPut ex - 1 = t exdx = dt I1 = dtt = 2t +C1 = 2ex - 1 + C1

and I2 = 1ex - 1dxPut ex - 1 = z2 exdx = 2zdz  dx = 2zz2 + 1dz I2 = 1z2zz2 + 1dz = 22zz2 + 1dz       = 2tan-1z + C2 = 2tan-1ex - 1 + C2 I = I1 - I2    from Eq. (ii) I = 2ex - 1 + C1 - 2tan-1ex - 1 - C2     where, C = C1 - C2      = 2fog(x) - 2tan-1fogx + C      fog(x) = ex - 1Now, comparing with the given integralfogxdx = Afogx + Btan-1fogx + CWe have,A = 2 and B = - 2Hence, A + B = 2 + - 2 = 0


Advertisement
Advertisement
49.

The value of 01tan-12x - 11 + x - x2dx is

  • 0

  • 1

  • - 1

  • None of these


50.

If 0 < P(A) < 1, 0 < P(B) < 1 and P(A  B) = P(A) + P(B) - P(A)P(B),then

  • PA  BC = PACPBC

  • P(A/B) = P(A)

  • Both (a) and (b) are  true

  • None of the above


Advertisement