The value of the expression 1 + sin2αcos2&al

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

11.

If the coefficients of the equation whose roots are k times the roots of the equation x3 + 14x2 - 116x + 1144 = 0, are integers, then a possible value of k is

  • 3

  • 12

  • 9

  • 4


12.

The sum of all 4-digit numbers that can be formed using the digits 2, 3, 4, 5, 6 without repetition, is

  • 533820

  • 532280

  • 533280

  • 532380


13.

If a set A has 5 elements, then the number of ways of selecting two subsets P and Q from A such that P and Q are mutually disjoint, is

  • 64

  • 128

  • 243

  • 729


14.

The coefficient of x in the expansion of (1 - x + x2 - x3)4 is

  • 31

  • 30

  • 25

  • - 14


Advertisement
15.

If the middle term in the expansion of (1 + x)2n is the greatest term, then x lies in the interval

  • nn+ 1, n + 1n

  • n + 1n, nn + 1

  • (n - 2, n)

  • (n - 1, n)


16.

To find the coefficient of x4 in the expansion of 3xx - 2x - 1, the interval in which the expansion is valid, is

  •  - 2 < x < 

  •  - 12 < x < 12

  •  - 1 < x < 1

  •  -  < x < 


17.

If 1 + tanα1 + tan4α = 2, α  0, π16,then α = ?

  • π20

  • π30

  • π40

  • π50


18.

If cosθ = cosα - cosβ1 - cosαcosβ, then one of the values of tanθ2 is

  • cotβ2tanα2

  • tanα2tanβ2

  • tanβ2cotα2

  • tan2α2tan2β2


Advertisement
Advertisement

19.

The value of the expression 1 + sin2αcos2α - 2πtanα - 3π4 - 14sin2αcotα2 + cot3π2 + α2 is

  • 0

  • 1

  • sin2α2

  • sin2α


D.

sin2α

We have,1 + sin2αcos2α - 2πtanα - 3π4 - 14sin2αcotα2 + cot3π2 + α2 cosα +sinα2cos2αtanα - tan3π41 +tanαtan3π4 - 142sinαcosαcotα2 - tanα2= cosα +sinα2cos2α - sin2αtanα + 11 -tanα - 14 . 2sinαcosαcosα2sinα2 - sinα2cosα2= 1 - sinαcos2α2sinα2cosα2 = 1 - sinαcos2αsinα= 1 - cos2α = sin2α


Advertisement
20.

If 16sinθ, cosθ and tanθ are in geometric progression, then the solution set of θ is

  • 2 ± π6

  • 2 ± π3

  •  +  - 1nπ3

  •  + π3


Advertisement