If ∫x3e5xdx = e5x54fx + C,then fx = ?
x35 - 3x252 + 6x53 - 654
5x3 - 52x2 + 53x - 6
53x3 - 15x2 + 30x - 6
53x3 - 75x2 + 30x - 6
∫xx2 + 2x + 22dx = ?
x2 + 2x2 + 2x + 2 - 12tan-1x - 1 + C
x2 - 24x2 + 2x + 2 - 12tan-1x + 1 + C
x2 + 22x2 + 2x + 2 - 12tan-1x + 1 + C
2x - 1x2 + 2x + 2 + 12tan-1x + 1 + C
B.
Let I = ∫xx2 + 2x + 22dxI = ∫xx + 12 + 12dxPut x + 1 = tanθ⇒ dx = sec2θ∴ I = ∫tanθ - 1 sec2θtan2θ + 12dθ I = ∫tanθ - 1 sec2θsec4θdθ= ∫tanθ - 1 sec2θdθ= ∫tanθsec2θ - 1sec2θdθ= ∫sinθcosθ - cos2θdθ
= 12∫2sinθcosθ - 2cos2θdθ= 12sin2θ - 1 - cos2θdθ= 12- cos2θ 2 - θ - sin2θ2 + C= - 14cos2θ + sin2θ - 12θ + C= - 141 - x + 12 + 2x + 11 + x + 12 - 12tan-1x + 1 + C= 14x2 - 2x2 + 2x + 2 - 12tan-1x + 1 + C
If ∫loga2 + x2dx = hx + C, then hx = ?
xloga2 + x2 + 2tan-1xa
x2loga2 + x2 + x + atan-1xa
xloga2 + x2 - 2x + 2atan-1xa
x2loga2 + x2 + 2x - a2tan-1xa
For x > 0, if ∫logx5dx = ?xAlogx5 + Blogx4+ Clogx3 + Dlogx2 + Elogx + F + Constant, thenA + B + C + D + E + F = ?
- 44
- 42
- 40
- 36
By the definition of the definite integral, the value of limn→∞1n2 - 1 + 1n2 - 22 + ... 1n2 - n - 12 is equal to
π
π2
π4
π6
∫π4π4x + π42 - cos2xdx is equal to
8π35
2π39
4π239
π263
The solution of the differential equation 1 + y2 + x - etan-1ydydx = 0, is
xetan-1y = tan-1y + C
xe2tan-1y = tan-1y + C
2xetan-1y = e2tan-1y + C
x2etan-1y = 4e2tan-1y + C
The solution of the differential equation 2x - 4y + 3dydx + x - 2y + 1 = 0 is
log2x - 4y + 3 = x - 2y + C
log22x - 4y + 3 = 2x - 2y+ C
log2x - 2y + 5 = 2x + y + C
log4x - 2y + 5 = 4x + 2y + C
The mid-point of the line segment joining the centroid and the orthocentre of the triangle whose vertices are (a, b),(a, c) and (d, c), is
5a + d6, b + 5c6
`a + 5d6, 5b + c6
(a, 0)
(0, 0)
The orthocentre of the triangle formed by the lines x + y = 1 and 2y2 - xy - 6x2 = 0
43, 43
23, 23
23, - 23
43, - 43