∫π4π4x + π42 - cos2xdx is e

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

71.

If x3e5xdx = e5x54fx + C,then fx = ?

  • x35 - 3x252 + 6x53 - 654

  • 5x3 - 52x2 + 53x - 6

  • 53x3 - 15x2 + 30x - 6

  • 53x3 - 75x2 + 30x - 6


72.

xx2 + 2x + 22dx = ?

  • x2 + 2x2 +2x + 2 - 12tan-1x - 1 + C

  • x2 - 24x2 + 2x +2 - 12tan-1x +1 +C

  • x2 + 22x2 + 2x +2 - 12tan-1x +1 +C

  • 2x - 1x2 +2x +2 + 12tan-1x +1 +C


73.

If loga2 + x2dx = hx + C, then hx = ?

  • xloga2 +x2 + 2tan-1xa

  • x2loga2 +x2 +x +atan-1xa

  • xloga2 + x2 - 2x + 2atan-1xa

  • x2loga2 +x2 + 2x - a2tan-1xa


74.

For x > 0, if logx5dx = ?xAlogx5 + Blogx4+Clogx3 + Dlogx2 +Elogx + F + Constant, thenA +B +C +D+E+ F = ?

  • - 44

  • - 42

  • - 40

  • - 36


Advertisement
75.

By the definition of the definite integral, the value of limn1n2 - 1 + 1n2 - 22 + ... 1n2 - n - 12 is equal to

  • π

  • π2

  • π4

  • π6


Advertisement

76.

π4π4x + π42 - cos2xdx is equal to

  • 8π35

  • 2π39

  • 4π239

  • π263


D.

π263

Let I = - π4π4x + π42 - cos2xdx= - π4π4x2 - cos2x + π4- π4π4dx2 - cos2x= 0 + 2 × π40π4dx2 - 1 - tan2x1 + tan2x0 = π20π41 + tan2x2 + 2tan2x - 1 + tan2xdx   = π20π4sec2x1 + 3tan2xdxPut tanx = t  sec2xdx = dt π201dt1 + 3t2 = π2 × 13tan-13t01 = π23tan-13 - tan-10 = π23π3 = π263


Advertisement
77.

The solution of the differential equation 1 + y2 + x - etan-1ydydx = 0, is

  • xetan-1y = tan-1y + C

  • xe2tan-1y = tan-1y + C

  • 2xetan-1y = e2tan-1y + C

  • x2etan-1y = 4e2tan-1y + C


78.

The solution of the differential equation 2x - 4y + 3dydx + x - 2y + 1 = 0 is

  • log2x - 4y + 3 = x - 2y + C

  • log22x - 4y + 3 = 2x - 2y+ C

  • log2x - 2y + 5 = 2x + y + C

  • log4x - 2y + 5 = 4x + 2y + C


Advertisement
79.

The mid-point of the line segment joining the centroid and the orthocentre of the triangle whose vertices are (a, b),(a, c) and (d, c), is

  • 5a +d6, b + 5c6

  • `a + 5d6, 5b + c6

  • (a, 0)

  • (0, 0)


80.

The orthocentre of the triangle formed by the lines x + y = 1 and 2y2 - xy - 6x2 = 0

  • 43, 43

  • 23, 23

  • 23, - 23

  • 43,  - 43


Advertisement