The differential equation of all parabolas whose axis is Y-axis,

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

21.

Let PQRS be a quadrilateral. If M and N are the mid-points of the sides PQ and RS respectively, then PS + QR =

  • 3 MN

  • 4 MN

  • 2 MN

  • 2 NM


22.

If vector r with dc's l, m, n is equally inclined to the coordinate axes, then the total number of such vectors is

  • 4

  • 6

  • 8

  • 2


23.

1x2 + 4x2 + 9dx = Atan-1x2 + Btan-1x3 + C, then A - B =

  • 16

  • 130

  • - 130

  • - 16


24.

If x - 5x - 7dx = Ax2 - 12x +35 + logx - 6 + x2 - 12x + 35 + C, then A =

  • - 1

  • 12

  • - 12

  • 1


Advertisement
25.

At random variable X ~ B(n, p), if values of mean and variance of X are 18 and 12 respectively, then total number of possible values of X are

  • 54

  • 55

  • 12

  • 18


26.

The area of the region bounded by the lines y = 2x + 1, y = 3x + 1and x = 4 is

  • 16 sq unit

  • 1213 sq unit

  • 1216 sq unit

  • 8 sq unit


Advertisement

27.

The differential equation of all parabolas whose axis is Y-axis, is

  • xd2ydx2 - dydx = 0

  • xd2ydx2 + dydx = 0

  • d2ydx2 - y = 0

  • d2ydx2 - dydx = 0


A.

xd2ydx2 - dydx = 0

Axis of parabola= Y axis and vertex of parabola is (0, k). Equation of parabola isx - 02 = 4ay - k          x2 = 4ay - 4akOn differentiate both sides w.r.t, 'x', we get          2x = 4adydx            x = 2adydx    12a = 1xdydxOn differentiating both sides w.r.t 'x', we get                     ddx1x . dydx = ddx12a 1x . d2ydx2 + dydx- 1x2 = 0                   xd2ydx2 - dydx = 0


Advertisement
28.

03xdx = ..., where [x] is greatest integer function

  • 3

  • 0

  • 2

  • 1


Advertisement
29.

The objective function of LPP defined over the convex set attains it optimum value at

  • atleast two of the corner points

  • all the corner points

  • atleast one of the corner points

  • None of the corner points


30.

The equation of the plane through (- 1, 1, 2) whose normal makes equal acute angles with coordinate axes is

  • r. i^ + j^ + k^ = 2

  • r. i^ + j^ + k^ = 6

  • r. 3i^ - 3j^ + 3k^ = 2

  • r. i^ - j^ + k^ = 3


Advertisement