Let f : [- 1, 3] → R be defined as f(x) =&nbs

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

1.

Let the numbers 2, b, c be in an A.P. and A = 1112bc4b2c2. If det(A)  [2, 16], then c lies in the interval :

  • [4, 6]

  • (2 + 23/4, 4)

  • [2, 3)

  • [3, 2 + 23/4]


2.

Let f : R  R be a diiferentiable function Satisfyingf'(3) + f'(2) = 0. Then limx01 + f3 + x - f31 + f2 - x - f21x is equal to :

  • 1

  • e

  • e- 1

  • e2


Advertisement

3.

Let f : [- 1, 3]  R be defined as f(x) = x + x,  - 1 x < 1  x + x,      1  x < 2  x +x,      2 x 3 where [t] denotes the greatest integer less than or equal to t. Then, f is discontinuous at :

  • only three points

  • only one point

  • only two points

  • four or more points


A.

only three points

fx = - x - 1, - 1  x < 0x,                 0  x < 12x,               1  x < 2x +2,          2 x < 36,                 x = 3 f(x) is discontinuous at 0, 1, 3.


Advertisement
4.

The height of a right circular cylinder of maximum volume inscribed in a sphere of radius 3 is :

  • 233

  • 3

  • 23

  • 6


Advertisement
5.

Let f(x) = ax(a > 0) be written as f(x) = f1(x) + f2(x), where f1(x) is an even function and f2(x) is an odd function. Then f1(x + y) + f1(x – y) equals :

  • 2f1(x)f1(y)

  • 2f1(x + y)f1(x - y)

  • 2f1(x + y)f2(x - y)

  • 2f1(x)f2(y)


6.

Given that the slope of the tangent to a curve y = y(x) at any point (x, y) is 2yx2. If the curve passes through the centre of the circle x2 + y2 - 2x - 2y = 0, then its equation is :

  • xlogey = 2x - 1

  • xlogey = - 2x - 1

  • x2logey = - 2x - 1

  • xlogey = x - 1


7.

Let a = 3i^ + 2j^ + xk^ and b = i^ - j^ + k^ , for some real x. Then a × b = r is possible if :

  • 0 < r  32

  • 32 < r  332

  • 332 < r  532

  • r  532


8.

If dxx31 + x623 = xf(x)(1 +x6)13 + C where C is a constant of integration, then the function f(x) is equal to :

  • 12x2

  • - 16x3

  • 3x2

  • - 12x3


Advertisement
9.

Two vertical poles of heights, 20 m and 80 m stand apart on a horizontal plane. The height (in meters) of the point of intersection of the Lines joining the top of each pole to the foot of the other, from this horizontal plane is :

  • 12

  • 18

  • 15

  • 16


10.

Let f(x) = 0xg(t)dt, where g is a non–zero even function. If f(x + 5) = g(x), then 0xf(t)dt equals :

  • x + 55g(t)dt

  • 25x + 5g(t)dt

  • 5x +5g(t)dt

  • 5x + 55g(t)dt


Advertisement