Let S be the set of all λ ∈ R for whic

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

11.

Let P(h, k) be a point on the curve y = x+ 7x + 2, nearest to the line, y = 3x – 3. Then the equation of the normal to the curve at P is :

  • x + 3y - 62 = 0

  • x + 3y + 26 = 0 

  • x - 3y - 11 = 0

  • x - 3y + 22 = 0


Advertisement

12.

Let S be the set of all  for which the system of linear equations

2x – y + 2z = 2

x – 2y + z = – 4

x + λy + z = 4

has no solution. Then, the set S

  • is a singleton

  • contains exactly two elements

  • contains more than two elements

  • is an empty set


B.

contains exactly two elements

For no. solution  = 0 and at least one of 1, 2, 3 is non-zero. = 2 - 121 - 2λ1λ1 = - λ - 12λ + 11 = 2 - 12- 4 - 2λ4λ1 = - 2λ2 + 6λ - 4 = 0  λ = 1, - 12Hence, S = 1, - 12


Advertisement
13.

If a function f(x) defined by

fx = aex + be - x, - 1  x < 1cx2, 1  x  3ax2 2cx, 3 < x  4be continuous for some a, b, c  R and f,0 + f'2 = e, then the value of a is :

  • 1e2 - 3e + 13

  • ee2 - 3e + 13

  • ee2 - 3e - 13

  • ee2 + 3e + 13


14.

Let α and β be the roots of the equation, 5x2 + 6x  2 = 0. If Sn = αn+ βn, n = 1, 2, 3,..., then :

  • 6S6 +5S5 = 2S4

  • 5S6 +6S5 = 2S4

  • 5S6 +6S5 +2S4 = 0 

  • 6S6 + 5S5 +2S4 = 0


Advertisement
15.

Let X = x  N : 1  1  17 and Y = {ax + b : x  X and a, b  R, a > 0}. If mean and variance of elements of Y are 17 and 216 respectively then a + b is equal to :

  • 7

  • 9

  •  - 7

  •  - 27


16.

Area (in sq. units) of the region outside x2 + y3 = 1 and inside the ellipse x24 + y29 = 1

  • 3π - 2

  • 34 - π

  • 6π - 2

  • 64 - π


17.

Let A be a 2 × 2 real matrix with entries from {0, 1} and |A|  0. Consider the following two statements;

(P)If A  I2, then |A| = – 1

(Q)If |A| = 1, then tr(A) = 2

where I2 denotes 2 × 2 identity matrix and tr(A) denotes the sum of the diagonal entries of A. Then :

  • (P) is true and (Q) are false

  • Both (P) and (Q) are true

  • Both (P) and (Q) are false

  • (P) is false and (Q) is true


18.

If the tangent to the curve y = x + siny at a point (a, b) is parallel to the line joining 0, 32 and 12, 2 then

  • b - a = 1

  • b = π2 + a

  • a +b = 1

  • b = a


Advertisement
19.

Let y = y(x) be the solution of the differential equation,

2 + sinxy + 1 . dydx = - cosx, y > 0, y0 = 1. If yπ = aand dydx at x = π is b, then the ordered pair a, b = ?

  • 2, 32

  • (1, - 1)

  • (2, 1)

  • (1, 1)


20.

The plane passing through the points (1, 2, 1), (2, 1, 2) and parallel to the line, 2x = 3y, z = 1 also passes through the point :

  • (2, 0, - 1)

  • (0, 6, - 2)

  • (0,  - 6, 2)

  • (- 2, 0 , 1)


Advertisement