JEE Mathematics Solved Question Paper 2020 | Previous Year Papers | Zigya

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

Advertisement
1.

Let S be the sum of the first 9 term of the series :(x + ka} + (x2 + (k + 2)a} + {x3 + (k + 4)a} + {x4 + (k + 6)a} + ........ where a  0 and x  1. If S = x10 - x +45ax - 1x - 1, then k is equal to

  •  - 3

  • 1

  •  - 5

  • 3


2.

The imaginary part of

3 +2 - 5412 - 3 - 2 - 5412 can be

  •  - 6

  • 6

  •  - 26

  • 6


3.

limx0tanπ4 + x1x = ?

  • 2

  • 1

  • e

  • e2


4.

For some θ  0, π2, if the eccentricity of the hyperbola, x2 - y2sec2θ = 10 is 5 times the eccentricity of the ellipse , x2sec2θ + y2 = 5, then the length of the latus rectum of the ellipse, is

  • 253

  • 26

  • 453

  • 30


Advertisement
5.

Which of the following is a tautology ?

  • ~ p  p  q  q

  • q  p  ~ p  q

  •  ~ q  p  q  q

  • p  q  q  p


6.

Let Ec denote the complement of an event E. Let E1, E2 and E3 be any pairwise independent events withP(E1) > 0 and PE1  E2 E3 = 0 then E3c  E3cE1 is equal to

  • PE3c - PE2

  • PE3c - PE2c

  • PE3 - PEc

  • PE2C + PE3


7.

If the equation cos4θ + sin4θ + λ = 0 has real solutions for θ, then λ lies in interval :

  •  - 54, - 1

  •  - 1, - 12

  • - 12, - 14

  •  - 32, - 54


8.

The set of all possible values of θ in the interval (0, π) for which the points(1, 2) and (sin(θ), cos(θ)) lie on the same side of the line x + y = 1 is

  • 0, π2

  • 0, π4

  • π4, 3π4

  • 0, 3π4


Advertisement
9.

Let f(x) be a quadratic polynomial such that f( – 1) + f(2) = 0. If one of the roots of f(x) = 0 is 3, then its other root lies in :

  • (1, 3)

  • ( - 1, 0)

  • ( - 3, - 1)

  • (0, 1)


10.

The area (in sq. units) of an equilateral triangle inscribed in the parabola y2 = 8x, with one of its vertices on the vertex of this parabola is

  • 643

  • 1923

  • 1283

  • 2563


Advertisement