Let f :  - 1, ∞ →&n

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

11.

Let f : R  R be a function which satisfies f(x + y) = f(x) + f(y)  x, y  R. If f(1) = 2 and g(n) = k = 1n - 1fk n  N, then the value of g(n) = 20, is

  • 9

  • 20

  • 5

  • 4


12.

If the sum of first 11 terms of an A.P. , a1, a2, a3 ..... is 0(a1  0), then the sum of the A.P., a1, a3, a5, ..... a23 is ka1, where k is equal to :

  • 12110

  • - 12110

  • - 725

  • 725


13.

Let n > 2 be an integer. Suppose that there are n Metro stations in a city located around a circular path. Each pair of nearest stations is connected by a straight track only. Further, each pair of nearest station is connected by blue line, whereas all remaining pairs of stations are connected by red line. If number of red lines is 99 times the number of blue lines, then the value of n is

  • 199

  • 101

  • 201

  • 200


Advertisement

14.

Let f :  - 1,   R be defined by f0 = 1and fx = 1xloge1 + x, x  0. Then the function f :

  • increases in ( – 1, 0) and decreases in (0, ).

  • decreases in (  1, ) 

  • decreases in ( – 1, 0) and increases in (0, ).

  • increases in ( – 1, )


B.

decreases in (  1, ) 

f'x = x1 + x - log1 + xx2= x - 1 + xlog1 + xx21 + xLet gx = x - 1 + xlog1 + xg'x = 1 - 1 - log1 + x= - log1 + x g'x = > 0  x   - 1, 0< 0  x  0, gmax at x = 0  g0 = 0gx < 0  x   - 1,  f'x < 0  x   - 1, fx decreasing  x   - 1, 


Advertisement
Advertisement
15.

Let A = {x = (x, y, z): PX = 0 and x2 + y2 + z2 = 1}, where 121 - 23 - 419 - 1 P then the set A

  • is a singleton

  • contains more than two elements

  • contains exactly two elements

  • is an empty set.


16.

Let a, b, c  R be all non-zero satisfy a3 + b3 + c3 = 2.If the matrix A = abcbcacab satifies ATA = I, then a value of abc can be :

  • 13

  • - 13

  • 3

  • 23


17.

A plane passing through the point (3, 1, 1) contains two lines whose direction ratios are 1, – 2, 2 and 2, 3, – 1 respectively. If this plane also passes through the point(α,–3, 5), then α is equal to

  • 5

  • 10

  •  - 5

  •  - 10


18.

The equation of the normal to the curve y = (1 + x)2y + cos2(sin – 1(x)) at x = 0 is :

  • y = 4x + 2

  • y + 4x = 2

  • x + 4y = 8

  • 2y + x = 4


Advertisement
19.

If a curve y = f(x), passing through the point (1,2), is the solution of the differential equation, 2x2dy = 2xy + y2dx, then f12 is equal to

  • 11 - loge2

  • 1 + loge2

  • 11 + loge2

  •  - 11 + loge2


20.

Consider a region R = {(x, y)  R: xy  2x}. If a line y = α divides the area of region R into two equal parts, then which of the following is true ?

  • 3α2 - 8α + 8 = 0

  • α3 - 6α32 - 16 = 0

  • α3 - 6α2 + 16 = 0

  • 2 - 8α32 + 8 = 0


Advertisement