Let  α and β be the 

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

1.

A triangle ABC lying in the first quadrant has two vertices as A(1, 2) and B(3, 1). If BAC = 90°, and ar(ABC) = 55sq. units, then the abscissa of the vertex C is :

  • 1 + 5

  • 2 + 5

  • 1 + 25

  • 25 - 1


2.

If 1 + 1 - 22 . 1 + 1 - 42 . 3 + 1 - 62 . 5 + ... + 1 - 202 . 19 = α - 220β thenan ordered pair α, β = ?

  • (11, 97)

  • (10, 103)

  • (11, 103)

  • (10, 97)


3.

Let P(3, 3) be a point on the hyperbola,x2a2 - y2b2 = 1 . If the normal to it at P intersects the x-axis at (9,0) and e is its eccentricity, then the ordered pair (a2, e2) is equal to :

  • 92, 3

  • 32, 2

  • 9, 3

  • 92, 2


4.

The mean and variance of 8 observations are 10 and 13.5 respectively. If 6 of these observations are 5, 7, 10, 12, 14, 15, then the absolute difference of the remaining two observations is :

  • 9

  • 5

  • 3

  • 7


Advertisement
5.

Let x2a2 + y2b2 = 1 a > b be agiven ellipse, length of whose latus rectum is 10. If its eccentricity is the maximum value of the function φt = 512 + t - t2 then a+ b2 is equal to

  • 145

  • 126

  • 116

  • 135


Advertisement

6.

Let  α and β be the roots of x2  3x + p = 0 and γ and δ be the roots of x2  6x + q = 0. If α, β, γ, δ  from a geometric progression. Then ratio (2q + p) : (2q  p) is

  • 3 : 1

  • 5 : 3

  • 9 : 7

  • 33 : 31


C.

9 : 7

α = a, β = ar, γ = ar2, δ = ar3α + β = 3  a + ar = 3      ...iγ + δ = 6  ar2 + ar3 = 6 ...iiBy eq i and ii  ar21 + ra1  r = 63  r2 = 2 2q + p2q - p = 2γδ + αβ2γδ - αβ = 2a2r5 + a2r2a2r5 - a2r = 2r4 + 12r4 - 1 = 8 + 18 - 1 = 97


Advertisement
7.

If A =cosθisinθisinθcosθ, θ = π24 and A5 = abcd, where i =  - 1, then which one of the following isnot true ?

  • 0  a2 +b2  1

  • a2 - d2 = 0

  • a2 - b2 = 12

  • a2 - c2 = 1


8.

Let y = y(x) be the solution of the differential equation,  xy'  y = x2(xcosx + sinx), x > 0. If y(π) = π, then  y''π2 + yπ2 is equal to :

  • 1 + π2

  • 1 + π2 + π24

  • 2 + π2 +π24

  • 2 + π2


Advertisement
9.

Let fx = x - 2 and gx = ffx, x  0, 4. Then03gx - fxdx = ?

  • 0

  • 12

  • 32

  • 1


10.

The integral xxsinx + cosx2dx = ? Where Cis a constant of integration : 

  • tanx + xsecxxsinx + cosx + C

  • tanx - xsecxxsinx + cosx + C

  • secx + xtanxxsinx + cosx + C

  • secx - xsecxxsinx + cosx + C


Advertisement