A person trying to lose weight by burning fat lifts a mass of 10

Subject

Physics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

1.

A particle of mass m is moving along the side of a square of side ‘a’, with a uniform speed v in the x-y plane as shown in the figure:

Which of the following statements is false for the angular momentum → L about the origin?

  • bold L space equals space minus fraction numerator mv over denominator square root of 2 end fraction space straight R space straight k with hat on top comma space when space the space paticle space is space moving space from space straight A space to space straight B
  • straight L space equals space mv space open parentheses fraction numerator straight R over denominator square root of 2 end fraction space plus straight a close parentheses space bold k with bold hat on top comma space when space the space particle space is space moving space from space straight B space to space straight C
  • straight L space equals space mv space open parentheses fraction numerator straight R over denominator square root of 2 end fraction space minus straight a close parentheses space straight k with hat on top comma space when space the space particle space is space moving space from space straight B space to space straight C
  • straight L space equals space mv space open parentheses fraction numerator straight R over denominator square root of 2 end fraction space minus straight a close parentheses space straight k with hat on top comma space when space the space particle space is space moving space from space straight B space to space straight C
1517 Views

2.

A point particle of mass m, moves along the uniformly rough track PQR as shown in the figure. The coefficient of friction, between the particle and the rough track equals µ. The particle is released, from rest, from the point P and it comes to rest at a point R. The energies, lost by the ball, over the parts, PQ and QR, of the track, are equal to each other, and no energy is lost when particle changes direction from PQ to QR. The values of the coefficient of friction µ and the distance x(=QR), are, respectively close to :


  • 0.2 and 6.5 m

  • 0.2 and 3.5 m

  • 0.29 and 3.5 m

  • 0.29 and 3.5 m

467 Views

Advertisement

3.

A person trying to lose weight by burning fat lifts a mass of 10 kg upto a height of 1 m 1000 times. Assume that the potential energy lost each time he lowers the mass is dissipated. How much fat will he use up considering the work done only when the weight is lifted up ? Fat supplies 3.8×107 J of energy per kg which is converted to mechanical energy with a 20% efficiency rate. Take g=9.8 ms−2:

  • 2.45 ×10−3 kg

  • 6.45 x×10−3 kg

  • 9.89 ×10−3 kg

  • 9.89 ×10−3 kg


D.

9.89 ×10−3 kg

Given potential energy burnt by lifting weight

= mgh = 10 x 9.8 x 1 x 1000 = 9.8 x 104 J

If mass lost by a person be m, then energy dissipated

 = m x 2 x 38 x 107 J /10

⇒ m = 5 x 10-3 x 9.8 / 3.8

= 12.89 x 10-3 kg 

628 Views

Advertisement
4.

A roller is made by joining together two cones at their vertices O. It is kept on two rails AB and CD which are placed asymmetrically (see figure), with its axis perpendicular to CD and its centre O at the centre of line joining AB and CD (see figure). It is given a light push so that it starts rolling with its centre O moving parallel to CD in the direction shown. As it moves, the roller will tend to:

  • turn left

  • turn right

  • go straight

  • go straight

763 Views

Advertisement
5.

A satellite is revolving in a circular orbit at a height ‘h’ from the earth’s surface (radius of earth R ; h<<R). The minimum increase in its orbital velocity required, so that the satellite could escape from the earth’s gravitational field, is close to: (Neglect the effect of atmosphere.)

  • square root of 2 gR end root
  • square root of gR
  • square root of gR divided by 2 end root
  • square root of gR divided by 2 end root
850 Views

6.

A uniform string of length 20 m is suspended from a rigid support. A short wave pulse is introduced at its lowest end. It starts moving up the string. The time taken to reach the support is: (take g = 10 ms−2 )

  • 2 straight pi square root of 2 straight s
  • 2s

  • 2 square root of 2 straight s
  • 2 square root of 2 straight s
1282 Views

7.

A screw gauge with a pitch of 0.5 mm and a circular scale with 50 divisions is used to measure the thickness of a thin sheet of Aluminium. Before starting the measurement, it is found that when the two jaws of the screw gauge are brought in contact, the 45th division coincides with the main scale line and that the zero of the main scale is barely visible. What is the thickness of the sheet if the main scale reading is 0.5 mm and the 25th division coincides with the main scale line?

  • 0.75 mm

  • 0.80 mm

  • 0.70 mm

  • 0.70 mm

971 Views

8.

A student measures the time period of 100 oscillations of a simple pendulum four times. The data set is 90 s, 91 s, 95 s and 92 s. If the minimum division in the measuring clock is 1 s, then the reported mean time should be:

  • left parenthesis 92 space plus-or-minus 2 right parenthesis straight s
  • left parenthesis 92 space plus-or-minus 5 right parenthesis straight s
  • left parenthesis 92 space plus-or-minus space 1.8 right parenthesis straight s
  • left parenthesis 92 space plus-or-minus space 1.8 right parenthesis straight s
639 Views

Advertisement
9.

A pendulum clock loses 12 s a day if the temperature is 408C and gains 4 s a day if the temperature is 208C. The temperature at which the clock will show correct time, and the co-efficient of linear expansion (α) of the metal of the pendulum shaft are respectively:

  • 25 C; α=1.85×10−5/ °C

  • 60 °C; α=1.85×10−4/ °C

  • 30°C; α=1.85×10−3/°C

  • 30°C; α=1.85×10−3/°C

838 Views

10.

An ideal gas undergoes a quasi static, reversible process in which its molar heat capacity C remains constant. If during this process the relation of pressure P and volume V is given by PVn=constant, then n is given by (Here CP and CV are molar specific heat at constant pressure and constant volume, respectively):

  • straight n space equals straight C subscript straight p over straight C subscript straight v
  • straight n equals space fraction numerator straight C minus space straight C subscript straight p over denominator straight C minus straight C subscript straight v end fraction
  • straight n equals fraction numerator straight C subscript straight p minus straight C over denominator straight C minus straight C subscript straight v end fraction
  • straight n equals fraction numerator straight C subscript straight p minus straight C over denominator straight C minus straight C subscript straight v end fraction
700 Views

Advertisement