If x2 - px + 4 > 0 for

Subject

Mathematics

Class

NDA Class 12

Pre Boards

Practice to excel and get familiar with the paper pattern and the type of questions. Check you answers with answer keys provided.

Sample Papers

Download the PDF Sample Papers Free for off line practice and view the Solutions online.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

1.

Suppose ω is a cube root unity with ω  1. Suppose P and Q are the points on the complex plane defined by ω and ω2. If O is the origin,then what is the angle between OP and OQ ?

  • 60°

  • 90°

  • 120°

  • 150°


Advertisement

2.

If x2 - px + 4 > 0 for all real values of x, then which one of the following is correct ?

  • p < 4

  • p  4

  • p > 4

  • p  4


C.

p > 4

x2 - Px + 4 > 0 is true when      Discriminant D>0 - P2 - 4 × 4 > 0P2 - 16 > 0         P2 > 16      P > 4 and P < - 4          P =  - , - 4  4,     P > 4


Advertisement
3.

If z = x + iy = 12 - i2 - 25, where i =  - 1, then what is the fundamental amplitude of z - 2z - i2 ?

  • π

  • π2

  • π3

  • π4


4.

What is the range of the function y = x21 + x2

where, x  

  • [0, 1)

  • [0, 1]

  • (0, 1)

  • (0, 1]


Advertisement
5.

A straight line intersects x and y axes at P and Q respectively. If (3, 5) is the middle point of PQ, then what is the area of the triangle OPQ ?

  • 12 square units

  • 15 square units

  • 20 square units

  • 30  square units


6.

If a circle of radius b units with centre at (0, b) touches the line y = x - 2, then what is the value of b ?

  • 2 + 2

  • 2 - 2

  • 22

  • 2


7.

Consider the function

fθ = 4sin2θ + cos4θ

What is the maximum value of the function f(θ)?

  • 1

  • 2

  • 3

  • 4


8.

Consider the function

fθ = 4sin2θ + cos4θ

What is the minimum value of the function f(θ)?

  • 0

  • 1

  • 2

  • 3


Advertisement
9.

Consider the function

fθ = 4sin2θ + cos4θ

Consider the following statements :

1. fθ = 2 has no solution2. fθ = 72 has a solutionWhich of the above statements is/are correct ?

  • 1 only

  • 2 only

  • Both 1 and 2

  • Neither 1 nor 2


10.

Consider the curves

fx = xx - 1 and gx = 3x2, x > 02x,   x  0

Where do the curves intersect ?

  • At (2, 3) only

  • At ( - 1, - 2) only

  • At (2, 3) and ( - 1, 2)

  • Neither at (2, 3) nor at ( - 1,  - 2)


Advertisement