Find a relation between x and y such thai the point P(x, y) is equidistant from the points A(2, 5) and B(-3, 7). - Zigya
Advertisement

Find a relation between x and y such thai the point P(x, y) is equidistant from the points A(2, 5) and B(-3, 7).


It is given that: point P(x, y) is equidistant from the points A(2, 5) and B(-3, 7)

rightwards double arrow space PA space equals space PB
rightwards double arrow square root of left parenthesis 2 minus straight x right parenthesis squared plus left parenthesis 5 minus straight y right parenthesis squared end root
equals square root of left parenthesis negative 3 minus straight x right parenthesis squared plus left parenthesis 7 minus straight y right parenthesis squared end root
rightwards double arrow square root of left parenthesis 2 right parenthesis squared plus left parenthesis straight x right parenthesis squared minus 2 left parenthesis 2 right parenthesis left parenthesis straight x right parenthesis plus left parenthesis 5 right parenthesis squared plus left parenthesis straight y right parenthesis squared minus 2 left parenthesis 5 right parenthesis left parenthesis straight y right parenthesis end root
equals square root of left parenthesis negative 3 right parenthesis squared plus left parenthesis straight x right parenthesis squared minus 2 left parenthesis negative 3 right parenthesis left parenthesis straight x right parenthesis plus left parenthesis 7 right parenthesis squared plus left parenthesis straight y right parenthesis squared minus 2 left parenthesis 7 right parenthesis left parenthesis straight y right parenthesis end root
rightwards double arrow square root of 4 plus straight x squared minus 4 straight x plus 25 plus straight y squared minus 10 straight y end root
equals square root of 9 plus straight x squared plus 6 straight x plus 49 plus straight y squared minus 14 straight y end root
rightwards double arrow square root of straight x squared plus straight y squared minus 4 straight x minus 10 straight y plus 29 end root
equals square root of straight x squared plus straight y squared plus 6 straight x minus 14 straight y plus 58 end root

Squaring both sides,
x2 + y2 - 4x - 10y + 29
= x2 + y2 + 6x - 14y + 58
⇒ -4x - 6x - 10y + 14y + 29 - 58 = 0
⇒    -10x + 4y - 29 = 0
⇒    -(10x - 4y + 29) = 0
⇒    10x — 4y + 29 = 0
⇒    10x -4y + 29 = 0. Ans.

283 Views

Advertisement

Coordinate Geometry

Hope you found this question and answer to be good. Find many more questions on Coordinate Geometry with answers for your assignments and practice.

Mathematics

Browse through more topics from Mathematics for questions and snapshot.