Advertisement

An equi-convex lens with radii of curvature of magnitude r each, is put over a liquid layer poured on top of a plane mirror. A small needle with its tip on the principal axis of the lens is moved along the axis until its inverted real image coincides with the needle itself. The distance of needle from lens is measured to be a. On removing the liquid layer and repeating the experiment, the distance is found to b. Given that two values of distances measured represent the real length values in the two cases, obtain a formula for refractive index of the liquid.


Here, combined focal length of glass lens and liquid lens, F = a, and Focal length of convex lens, f1 = b.
If f2 is focal length of liquid lens, then

Here, combined focal length of glass lens and liquid lens, F = a, and
1 over straight f subscript 1 plus 1 over straight f subscript 2 space equals space 1 over straight F
space space space space space space space space space space space space 1 over straight f subscript 2 space equals 1 over straight F minus 1 over straight f subscript 1 space equals space 1 over straight a minus 1 over straight b
The liquid lens is plano-concave lens for which
                           straight R subscript 1 space equals space minus straight r comma space space space space straight R subscript 2 space equals space infinity
From               1 over straight f subscript 2 space equals space left parenthesis straight mu minus 1 right parenthesis space open parentheses 1 over straight R subscript 1 minus 1 over straight R subscript 2 close parentheses
                    1 over straight a minus 1 over straight b space equals space left parenthesis straight mu minus 1 right parenthesis space open parentheses fraction numerator 1 over denominator negative straight r end fraction minus 1 over infinity close parentheses
therefore          open parentheses straight mu minus 1 close parentheses space equals space straight r over straight b minus straight r over straight a
                       straight mu space equals 1 plus straight r over straight b minus straight r over straight a.
2628 Views

Advertisement
A ray of light passing through an equilateral triangular glass prism form air undergoes minimum deviation when angle of incidence is 3/4th of the angle of prism. Calculate the speed of light in the prism.

Angle of prism, A = 60o 
Refractive index of prism = 1.5 
Given, angle of incidence , i1=i234A = 3445o = 45o
As,                    A + δ = i1 + i
                60δ = 45o + 45

Then, angle of minimum deviation, δ =  90o - 60o                                                           = 30
We know that, velocity of light in vacuum = 3×108 m/s 
Now, using the formula, 

                μ = sin (A+δm)/2sin A/2 = cv
That is,  
                v = c sin A/2sin (A+δm)/2   = 3× 108  sin 30osin (60o + 30o)/2    = 3× 108 sin 30osin 45o    =  3× 108 ×0.50000.7071   = 2.12 × 108 m/s  
 
is the required speed of light in the prism.

2568 Views

A point object is placed at a distance of 12 cm on the axis of a convex lens of focal length 10 cm. On the other side of the lens, a convex mirror is placed at the distance of 10 cm from the lens such that the image formed by the combination coincides with the object itself. What is the focal length of the mirror?

For the refraction at convex lens, we have

For the refraction at convex lens, we haveu = –12 cm; v = ? f = + 1

u = –12 cm; v = ? f = + 10 cm Using lens formula, we have
                                      1 over straight v minus fraction numerator 1 over denominator left parenthesis negative 12 right parenthesis end fraction space equals 1 over 10
or,                                  straight v space equals space plus space 60 space cm

Thus, in the absence of the convex mirror, convex lens will form the image I1, at a distance of 60 cm behind the lens. As the mirror is at a distance of 10 cm from the lens, I1 will be at a distance of (60 – 10) = 50 cm from the mirror, i.e., MI1 = 50 cm.
Now, as the final image I2 is formed at the object itself, the rays after reflection from the mirror retraces its path, i.e., the rays on the mirror are incident normally, i.e., I1 is the centre of the mirror so that
                                      straight R space equals space MI subscript 1 space equals space plus space 50 space cm
and                                straight f space equals space straight R over 2 space equals 50 over 2 space equals 25 space cm.



963 Views

The plane surface of a plano-convex lens of focal length 60 cm is silvered. A point object is placed at a distance 20 cm from the lens. Find the position and nature of the final image formed.

Let f be the focal length of the equivalent spherical mirror.

Let f be the focal length of the equivalent spherical mirror.We have,
We have, 
                          box enclose 1 over straight f space equals 1 over straight f subscript 1 plus 1 over straight f subscript straight m plus 1 over straight f subscript 1 end enclose

or,                1 over straight f space equals 2 over straight f subscript 1 plus 1 over straight f subscript straight m

Here,            straight f subscript 1 space equals space plus space 60 space cm
                   straight f subscript straight m space equals space infinity

therefore              1 over straight f equals 2 over 60 plus 1 over infinity space equals 1 over 30

or,                straight f space equals space plus 30 space cm     
The problem is reduced to a simple case where a point object is placed in front of a concave mirror.
Now, using mirror formula
                      1 over straight u plus 1 over straight v space equals 1 over straight f comma  we have                     left enclose straight m space equals fraction numerator negative straight v over denominator straight u end fraction equals fraction numerator negative 60 over denominator negative 20 end fraction space equals space plus 3 end enclose
                   fraction numerator 1 over denominator negative 20 end fraction plus 1 over straight v space equals fraction numerator 1 over denominator negative 30 end fraction
rightwards double arrow                       straight v space equals space 60 space cm
The image is erect and virtual and 3 lines of object.
865 Views

A thin lens, made of material of refractive index μ has a focal length f. If the lens is placed in a transparent medium of refractive index ‘n’ (n < μ), obtain an expression for the change in focal length of the lens. Use the result to show that the focal length of a lens of the glass = becomes μw(μg-1)(μg-μw) times its focal length in air, when it is placed in water (μ = μw).

The focal length of the lens having radii of its curvature R1 and R2 and refractive index of its material with respect to air μ, f is given by
1 over straight f space equals space left parenthesis straight mu minus 1 right parenthesis space open square brackets 1 over straight R subscript 1 minus 1 over straight R subscript 2 close square brackets                     ...(i)
When the lens is put in a transparent medium, the refractive index of the material of the lens with respect to the medium equals space open parentheses straight mu over straight n close parentheses.
Thus focal length of the lens in the medium f' is given by
                              fraction numerator 1 over denominator straight f apostrophe end fraction space equals space open parentheses straight mu over straight n minus 1 close parentheses space open square brackets 1 over straight R subscript 1 minus 1 over straight R subscript 2 close square brackets                   ...(ii)
From Eqns. (i) and (ii),
                             fraction numerator straight f over denominator straight f apostrophe end fraction space equals space fraction numerator left parenthesis straight mu minus 1 right parenthesis over denominator open parentheses begin display style straight mu over straight n end style minus 1 close parentheses end fraction

or                         box enclose straight f apostrophe space equals space fraction numerator left parenthesis straight mu minus 1 right parenthesis straight n over denominator left parenthesis straight mu minus straight n right parenthesis end fraction. straight f end enclose                                        ...(iii)
Thus, change in focal length
 increment straight f space equals space straight f apostrophe space minus straight f space open square brackets fraction numerator left parenthesis straight mu minus 1 right parenthesis straight n over denominator left parenthesis straight mu minus straight n right parenthesis end fraction straight f minus straight f close square brackets

         equals space straight f open square brackets fraction numerator left parenthesis straight mu minus 1 right parenthesis straight n space minus space left parenthesis straight mu minus straight n right parenthesis over denominator left parenthesis straight mu minus straight n right parenthesis end fraction close square brackets

         equals space straight f open square brackets fraction numerator μn minus straight n minus straight mu plus straight n over denominator left parenthesis straight mu minus straight n right parenthesis end fraction close square brackets

          equals space fraction numerator 1 over denominator left parenthesis straight mu minus 1 right parenthesis space open square brackets begin display style 1 over straight R subscript 1 end style minus begin display style 1 over straight R subscript 2 end style close square brackets end fraction open square brackets fraction numerator μn minus straight mu over denominator left parenthesis straight mu minus straight n right parenthesis end fraction close square brackets

           equals space fraction numerator straight R subscript 1 straight R subscript 2 over denominator left parenthesis straight R subscript 2 minus straight R subscript 1 right parenthesis space left parenthesis straight mu minus 1 right parenthesis end fraction open square brackets fraction numerator straight mu left parenthesis straight n minus 1 right parenthesis over denominator left parenthesis straight mu minus straight n right parenthesis end fraction close square brackets

increment straight f space equals space fraction numerator straight R subscript 1 straight R subscript 2 over denominator left parenthesis straight R subscript 2 minus straight R subscript 1 right parenthesis end fraction open square brackets fraction numerator straight n over denominator left parenthesis straight mu minus straight n right parenthesis end fraction minus fraction numerator 1 over denominator left parenthesis straight mu minus 1 right parenthesis end fraction close square brackets                              ...(iv)
From Equ (iii),
                              straight f apostrophe space equals space fraction numerator left parenthesis straight mu minus 1 right parenthesis straight n over denominator left parenthesis straight mu minus straight n right parenthesis end fraction. straight f
Putting                   straight mu space equals space straight mu subscript straight g space and space straight n space equals space straight mu subscript straight w
                             straight f apostrophe space equals space fraction numerator left parenthesis straight mu subscript straight g minus 1 right parenthesis straight mu subscript straight w over denominator left parenthesis straight mu subscript straight g minus straight mu subscript straight w right parenthesis end fraction. straight f


The focal length of the lens having radii of its curvature R1 and R2

The focal length of the lens having radii of its curvature R1 and R2

814 Views

Advertisement