Can a directed line have direction angles 45°, 60°, 120°? f

A line makes an angle of straight pi over 4 with each of y-axis and z-axis. Find the angle made by it with x-axis. 


Let a be the angle which the line makes with positive axis of x.
therefore   direction cosines of the line are cos space straight alpha comma space space cos space straight pi over 4 comma space space cos straight pi over 4
therefore space space space cos squared space straight alpha space plus space cos space squared space straight pi over 4 space plus space cos squared straight pi over 4 space equals space 1               open square brackets cos squared straight alpha plus cos squared straight beta plus cos squared straight gamma space equals space 1 close square brackets
therefore              cos squared straight alpha plus 1 half plus 1 half space equals space 1 space space space space rightwards double arrow space space space space cos squared straight alpha space equals space 0 space space space rightwards double arrow space space space space cos space straight alpha space equals space 0 space space space space space rightwards double arrow space space space straight a space equals space straight pi over 2
∴ line makes a right angle with x-axis.
252 Views

Find the direction-cosines of a line which makes equal angles with the axes. How many such lines are there?

Let α be the angle which the line with all the axes,
∴     its direction-cosines are cos α, cos α, cos α
therefore space space cos squared straight alpha plus cos squared straight alpha plus cos squared straight alpha space equals space 1                                   open square brackets because space space straight l squared plus straight m squared plus straight n squared space equals space 1 close square brackets
therefore space space space 3 space cos space squared space equals space 1 comma space space space space or space space space cos squared straight alpha space equals space 1 third
therefore space space space space space space cos space straight alpha space equals space plus-or-minus space fraction numerator 1 over denominator square root of 3 end fraction
therefore required direction-cosines are plus-or-minus fraction numerator 1 over denominator square root of 3 end fraction comma space plus-or-minus fraction numerator 1 over denominator square root of 3 end fraction comma space plus-or-minus fraction numerator 1 over denominator square root of 3 end fraction
These are four different groups of signs
i.e.,     +, +, +
           +, -, +
           +, +, -
           +, -, -
∴ there are four distinct lines.
131 Views

Advertisement

Can a directed line have direction angles 45°, 60°, 120°?


Let l, m, n be the direction cosines of the line with direction angles 45°. 60°, 120°
∴     l = cos 45°              equals space fraction numerator 1 over denominator square root of 2 end fraction comma space space straight m space equals space cos space 60 degree space equals 1 half comma space space straight n space equals cos space 120 degree space equals space cos space left parenthesis 180 degree minus 60 degree right parenthesis space equals space minus cos space 60 degree space equals negative 1 half
therefore space space space straight l squared plus straight m squared plus straight n squared space equals space 1 half plus 1 fourth plus 1 fourth space equals space fraction numerator 2 plus 1 plus 1 over denominator 4 end fraction space equals 4 over 4 space equals 1
∴ a line can have the given angles as direction angles.
421 Views

Advertisement
Can a directed line have direction angles 45°, 45°, 60°?

Let l, m, n be the direction cosines of the line with direction angles 45°, 45°, 60°.
     therefore space space straight l space equals cos space 45 degree space equals fraction numerator 1 over denominator square root of 2 end fraction comma space straight m space equals space cos space 45 degree space equals space fraction numerator 1 over denominator square root of 2 end fraction comma space straight n space equals space cos space 60 degree space equals space 1 half
These values of l, m, n do not satisfy the selection l2 + m2 + n2 = 1 as
    open parentheses fraction numerator 1 over denominator square root of 2 end fraction close parentheses squared plus space open parentheses fraction numerator 1 over denominator square root of 2 end fraction close parentheses squared plus space open parentheses 1 half close parentheses squared space equals space 1 half plus 1 half plus 1 fourth space equals 5 over 4 not equal to 1
∴ given angles cannot be the direction angles of a line.
202 Views

Find the direction cosines of x, y and z-axis.

The x-axis makes angles 0°, 90° and 90° with x, y and z-axis.
∴  direction cosines of x-axis are cos 0°, cos 90°, cos 90° i.e. 1, 0. 0
Again y-axis makes angles 90°, 0°, 90° with x, y and z-axis.
∴ direction cosines of y-axes are cos 90°, cos 0°, cos 90° i.e. 0, 1,0.
Also z-axis makes angles 90°, 90°, 0° with x, y and z-axis.
∴   direction cosines of z-axis and cos 90°, cos 90°, cos 0° i.e. 0, 0, 1.

479 Views

Advertisement