CBSE
Gujarat Board
Haryana Board
Class 10
Class 12
π3, 2π3
π3, π
2π3, 4π3
2π3, 5π3
C.
We have, 5 + 4cosθ2cosθ + 1 = 0 ...i cosθ = 1 - tan2θ21 + tan2θ2,∴ cosθ = 1 - t21 + t2 ∵ put tanθ2 = tThen Eq.i beecomes 5 + 41 - t21 + t221 - t21 + t2 + 1 = 0⇒ 5 + 5t2 + 4 - 4t22 - 2t2 + 1 + t2 = 0⇒ t2 + 93 - t2 = 0∴ t = ± 3⇒ tanθ2 = 3 or tanθ2 = - 3
⇒ θ2 = π3 or θ2 = 2π3 θ = 2π3 or 4π3
The equation 3sinx + cosx =4,has
only one solution
two solution
infinitely many solution
No solution
D.
We have,3sinx + cosx = 4⇒ 32sinx+12cosx = 2⇒ sinxcosπ6+ cosxsinπ6 = 2⇒ sinx + π6 = 2,which is not possibleTherefore,this equation has no solutions
If tan3AtanA = a, then sin3AsinA is equal to
2aa + 1
2aa - 1
aa + 1
aa - 1
B.
Given thattan3AtanA = a⇒3tanA - tan3AtanA1 - 3tan2A = a⇒ 3 - tan2A = a - 3tan2A⇒tan23a - 1 = a - 3⇒ tanA = ± a - 33a - 1Now,sin3AsinA = 3sinA - sin3AsinA = 3 - 4sin2A = 3 - 4a - 34a - 1 = 3a - 3 - a + 3a - 1 = 2aa - 1
If A, B, C, D are angles of a cyclic quadrilateral,then cosA + cosB + cosC + cosD is equal to
0
1
- 1
4
A.
We have,∠A + ∠C = 180°∠B + ∠C = 180°Now, cosA + cosC + cosB +cosD=2cosA + C2cosA - C2 + 2cosB + D2cosB - D2=2cos90°cosA - C2 + 2cos90°cosB - D2 = 0
If y = y = Acosnx + Bsinnx, then y2 + n2y is equal to
y
We have,y = Acosnx + BsinnxOn differentiating w.r.t x, we gety1 = - Ansinnx + BncosnxAgain differentiating w.r.t x, we get y2 = - An2cosnx - Bn2sinnx⇒ y2 = - n2Acosnx + Bsinnx = - n2y⇒ y2 + n2y = 0