PQRS is a cyclic quadrilateral. Given ∠QPS = 73°, ∠PQ

The 4th term of an A.P. is 22 and 15th term is 66. Find the first term and the common difference. Hence find the sum of the series to 8 terms.


Let  'a'  be the first term and  'd'  be the common difference of given  A.P.

Now,

4th term = 22

 a + 3 d = 22        ............( i )

 

15th term = 66

 a + 14 d = 66      ............( ii )

 

Subtracting  ( i )  from  ( ii ),  we have

11 d = 44

 d = 4

Substituting the value of  'd'  in  ( i ),  we get

a = 22 - 3 x 4 

   = 22 - 12

   = 10

 First term = 10.

Now,

Sum of  n  terms = n2  2 a + ( n - 1 ) d 

Sum of  8  terms = 82  2 × 10 + ( 8 - 1 ) × 4                                  = 82  2 × 10 + 7 × 4                            = 4  20 + 28                            = 4 × 48                           = 192


If (k – 3), (2k + l) and (4k + 3) are three consecutive terms of an A.P., find the value of k.


( k - 3 ),  ( 2 k + 1 )  and  ( 4 k + 3 )  are three consecutive terms of an A.P.

 2 ( 2 k + 1 ) = ( k - 3 ) + ( 4 k + 3 )

⇒  4 k + 2 = k - 3 + 4 k + 3

⇒  4 k + 2 = 5 k

⇒  k = 2


Advertisement

PQRS is a cyclic quadrilateral. Given ∠QPS = 73°, ∠PQS = 55° and ∠PSR = 82°,

calculate: 

(i) ∠QRS                     

(ii) ∠RQS                    

(iii) ∠PRQ   

                                     


Given: PQRS is cyclic quadrilateral.

 QPS = 73° ,    PQS = 55° ,    PSR = 82°

 

( i ) Opposite angle of a cyclic quadrilateral are supplementary.

  QPS + QRS =  180° 73° +   QRS = 180°  QRS = 180° - 73° =  107°

 

( ii ) Opposite angle of a cyclic quadrilateral are supplementary.

  PSR + PQR = 180°   PSR + ( PQS + RQS ) = 180° 82° + 55 + RQS = 180° RQS = 180° - 55° - 82° RQS = 43°

 

( iii ) In  PQS,  by angle sum property, we have 

 PSQ + PQS + QPS = 180° PSQ + 55° + 73° = 180° PSQ  = 180° - 128°  PSQ  = 52°Now, PRQ = PSQ       ( Angles in the same segment of a circle )  PRQ  = 52°


Advertisement
Advertisement