Priyanka has a recurring deposit account of Rs. 1000 per month at

Mr. Richard has a recurring deposit account in a bank for 3 years at 7.5%  p. a. simple interest. If he gets Rs. 8325  as interest at the time of maturity, find 

(i) The monthly deposit

(ii) The maturity value


( i )  Let the deposit per month  = Rs. P

Number of months = ( n ) = 36

Rate of interest ( r ) = 7.5 % p.a.

 

( ii ) Maturity value = P x n + S.I. 

                            = Rs. ( 2000 x 36 + 8325 )

                            = Rs. 80,325. 


Mr. Lalit invested  Rs. 5000  at a certain rate of interest, compounded annually for two years. At the end of first year it amounts to  Rs. 5325. Calculate

(i) The rate of interest

(ii) The amount at the end of second year, to the nearest rupee.


( i )  P = Rs. 5000,   T = 1 year,   A = Rs. 5325

   I = A - P

 I = 5325 - 5000 I = 325

So, the interest at the end of first year is Rs. 325

 

I = PRT100 R = I X 100P X T R = 325 X 1005000 X 1 R = 32500 5000   =  6.5 %

So, the rate of interest at the end of the first year is  6.5 %.

 

( ii ) The amount at the end of the first year will be the principal for the second year.

P = Rs. 5325,  T = 1 year,   R = 6.5 %

 

I = PRT100 I = 5325 X 6.5 X 1100 I = 346.125A = P + I A = 5325 + 346.125 A = 5671.125 A  RS. 5671

So, the amount at the end of the second year is  Rs. 5671.


Jaya borrowed Rs. 50,000 for 2 years. The rates of interest for two successive years are 12% and 15% respectively. She repays 33,000 at the end of the first year. Find the amount she must pay at the end of the second year to clear her debt.


For  1st  year :

P = Rs. 50,000;    R = 12 %   and    T = 1 year

 

 Interest = Rs. 50,000 x 12 x1100                  = Rs. 6,000

 

And,  Amount  =  Rs. 50,000 + Rs. 6,000 = Rs. 56,000

Since  Money repaid  =  Rs. 33,000 

 Balance =  Rs.  56,000 - Rs.  33,000

                 = Rs.  23,000

 

For  2nd  year :

 

P = Rs.  23,000;    R = 15 %     and    T = 1 year

 

 Interest = Rs. 23,000 x 15 x 1100                  = Rs. 3,450

 

And,  Amount  =  Rs. 23,000 +  Rs. 3,450

                      = Rs. 26,450

 

Thus, Jaya must pay  Rs. 26,450  at the end of  2nd  year to clear her debt.  


A page from a savings bank account passbook is given below:
Date Particulars

Amount withdrawn

( Rs. )

Amount Deposited  ( Rs. )

Balance

( Rs. )

Jan 7, 2016 B / F     3000.00
Jan 10, 2016 By cheque   2600.00 5600.00
Feb 8, 2016 To Self 1500.00   4100.00
Apr 6, 2016 By Cheque 2100.00   2000.00
May 4, 2016 By  Cash   6500.00 8500.00
May 27, 2016 By Cheque   1500.00 10000.00

(i) Calculate the interest for the 6 months from January to June 2016, at 6% per annum.

(ii) If the account is closed on 1st July 2016, find the amount received by the account holder.


Principal for the month of Jan  =  Rs.  5600

Principal for the month of Feb  =  Rs.  4100

Principal for the month of Mar  =  Rs.  4100

Principal for the month of Apr  =  Rs.  2000

Principal for the month of May  =  Rs.  8500

Principal for the month of June =  Rs.  10000

Total Principal for one month    =  Rs.  34300

Rate of interest = 6 % pa

( i ) Simple interest = PRT100                               = 34300 X 6 X 1100 X 12                              = Rs. 171.50

( ii ) Total amount = Rs. 10000 + Rs. 171.50

                           = Rs. 10171.50


Advertisement

Priyanka has a recurring deposit account of Rs. 1000 per month at 10% per annum. If she gets Rs. 5550 as interest at the time of maturity, find the total time for which the account was held.


Given:  P = Rs. 1000,   r = 10 %   and   I = Rs. 5550

I = P × n ×  n + 1 2 × 12 × r100 5550 = 1000 × n ×  n + 1 24  × 10100 1332 = n ×  n + 1  n2 + n - 1332 = 0 n2 + 37 n - 36 n - 1332 = 0 n  n + 37  - 36  n + 37  = 0  n + 37   n - 36  = 0 n = - 37    or   n = 36   

Since number of months cannot be negative, we reject  n = - 37

 n = 36

Thus, total time is  36  months.


Advertisement
Advertisement