The following figure represents a solid consisting of a right cir

A certain number of metallic cones, each of radius  2 cm  and height  3 cm  are melted and recast into a solid sphere of radius  6 cm. Find the number of cones.


Let the number of cones be  n.

Let the radius of the sphere be  rs = 6 cm

Radius of a cone be  rc = 2 cm

And height of the cone be  h = 3 cm

Volume of sphere = n ( Volume of a metallic cone )

 

Hence, the number of cones is  72.


In the given figure ABCD is a rectangle. It consists of a circle and two semi circles each of which are of radius 5 cm. Find the area of the shaded region. Give your answer correct to three significant figures.

                           


Length of the rectangle  =  Radius of two semi-circles  +  Diameter of a circle

                                    =  5 + 5 + 10 

                                    =  20 cm.

Breadth of rectangle  = Diameter of a circle = 2 x 5 = 10 cm.

 Area of a rectangle = Length  x Breadth

                                 = 20  x  10

                                 = 200  sq. cm

Area of a circle = 227 × 5 × 5                         = 78.571  sq.cmAnd,  area of two semi-circles each of radius  5 cm  = 2  12 ×78.571                                                                                     = 78.571  sq.cm 

Now,

Area of shaded region  =  Area of a rectangle  -  Area of a circle  -  Area of a two semi-circles 

                                 =  200  -  78.571 - 78. 571

                                 =  200  -  157.142

                                 =  42.858  sq. cm.


Solve the following inequation, write the solution set and represent it on the number line.

- 3 ( x - 7 )  15 - 7 x > x + 13,       x  R


- 3 ( x - 7 )  15 - 7 x > x + 13 - 3 ( x - 7 )  15 - 7 x       and        15 - 7 x > x + 13  - 3 x + 21  15 - 7 x       and        45 - 21 x > x + 1  - 3 x + 7 x  15 - 21       and        45 - 1  > x + 21 x 4 x  - 6         and          44 > 22 x x  - 32      and       2 > x x  - 1.5      and      2 > xThe solution set is   x : x  R,    - 1.5  x < 2 .

 

 


Advertisement

The following figure represents a solid consisting of a right circular cylinder with a hemisphere at one end and a cone at the other. Their common radius is 7 cm. The height of the cylinder and cone are each of 4 cm. Find the volume of the solid.

                          


Volume of solid = Volume of cone + Volume of cylinder + Volume of hemisphere

Volume of cone = π r2 h3                           = 22 × 7 ×7 × 47 × 3                            = 6163 cm3Volume of cylinder = π r2 h                                 =  22 × 7 ×7 × 47                                  = 616 cm3Volume of  hemisphere = 23 π r3                                      =  2 × 22 × 7 ×7 × 73 × 7                                        = 21563  cm3   Total volume =   6163 +  616 +  21563                     = 1540 cm3


Advertisement

A conical tent is to accommodate 77 persons. Each person must have 16 m3 of air to breathe. Given the radius of the tent as 7 m, find the height of the tent and also its curved surface area.


Let  h  be the height and  r  be the radius of the base of the conical tent.

Accordingto the given information,

77 × 16 = 13 π r2 h 77 × 16 = 13 × 227 × 7 × 7 × h 77 × 16 = 13 × 22 × 7 × h h =  77 × 16 × 322 × 7  h = 24 m.Now,  l2 =  r2 + h2 l2 =  72 + 242 = 625 l = 25 m.

 Curved surface area = π r l                                      = 227 × 7 × 25                                      = 550 m2

Hence, the height of the tent is  24 m  and the curved surface area of the tent is  550 m2.


Advertisement