If the straight lines 3x – 5y = 7 and 4x + ay + 9 = 0 are p
Advertisement

If the straight lines 3x – 5y = 7 and 4x + ay + 9 = 0 are perpendicular to one another, find the value of a.


3 x - 5 y = 7

4 x + a y + 9 = 0

 a y =  - 4 x - 9 y = - 4a x - 9a Its slope = - 4a

Since lines are perpendicular to each other,

35 × - 4a = - 1       35 ×  4a = 1  4a = 53 a = 4 × 35 a  = 125


Advertisement

A(2, 5), B(–1, 2) and C(5, 8) are the vertices of a triangle ABC, `M' is a point on AB such that AM : MB = 1 : 2. Find the co-ordinates of 'M’. Hence find the equation of the line passing through the points C and M.


let the co-ordinates of M be ( x, y ).

Thus we have

x = m1 x2 + m2 x1m1 + m2   = 1 ×  - 1  + 2 × 21 + 2   = - 1 + 43 = 33x = 1

y = = m1 y2 + m2 y1m1 + m2   = 1 ×  2  + 2 × 51 + 2   = 2 + 103 = 123y = 4 Co-ordinates of  M  are  1, 4 .

Slope of line passing through  C  and  M  = m = 4 - 81 - 5 = - 4- 4 = 1 Required equation is given by y - 8 = 1 ( x - 5 ) y - 8 =  x - 5  y = x + 3.


Use a graph paper for this question  ( Take  2 cms  = 1  unit on both  x  and  y  axis ) 

(i) Plot the following points:  A ( 0, 4 ),  B ( 2, 3 ),  C ( 1, 1 )  and  D ( 2, 0 )

(ii) Reflect points  B,  C,  D  on the  y-axis  and write down their coordinates. Name the images as  B’,  C’,  D’  respectively.

(iii) Join the points  A,  B,  C,  D,  D’,  C’,  B’  and  A  in order, so as to form a closed figure. Write down the equation of the line of symmetry of the figure formed.


              

The image of point  ( x, y )  0n  y-axis has the co-ordinates  ( - x, y ).

Thus,  we have

Co-ordinates of  B' = ( - 2, 3 )

Co-ordinates of  C' = ( - 1, 1 )

Co-ordinates of  D' = ( - 2, 0 )

Since,  Y-axis is the line of symmetry of the figure formed, the equation of the line of symmetry is  x = 0.


A ( -1, 3 ),  B ( 4, 2 )  and  C ( 3, -2 ) are the vertices of a triangle. 

(i) Find the coordinates of the centroid G of the triangle

(ii) Find the equation of the line through  G  and parallel to  AC


Given vertices:   A ( - 1, 3 ),  B ( 4, 2 )  and  C ( 3, - 2 )

( i ) Co-ordinates of the centroid  G  of  ABC are given by

G =  - 1 + 4 + 33, 3 + 2 - 23       =   63, 33   = ( 2, 1 )

 

( ii ) Since the line through  G  is parallel to  AC,  the slope of the lines are the same.

 m y2 - y1x2 - x1 = - 2 - 33 -  - 1  = - 54So, equation of the line passing through  G ( 2, 1 )  and with slope  - 54 is given by,y - y1 = m ( x - x1 ) y - 1 = - 54  x - 2  4 y - 4 = - 5 x + 10 5 x + 4 y = 14  is the required equation.


A line  AB  meets  X – axis  at  A  and  Y –axis  at  B.  P (4, -1)  divides  AB  in the ratio  1 : 2. 

(i) Find the coordinates of  A  and  B.

(ii) Find the equation of the line through P and perpendicular to AB.

                    


(i) Since,  A  lies on the  x-axis, let the coordinates of  A  be  (x, 0).

Since  B  lies on the  y - axis, let the coordinates of  B  be  (0, y).

Let  m = 1   and    n = 2.

Using section formula, 

Co-ordinates of  P =  1 ( 0 ) + 2 ( x )1 + 2, 1 y + 2 ( 0 )1 + 2  ( 4, - 1 ) =  2 x3, y3  2 x3 = 4     and    y3 = - 1   2 x = 3 x 4     and    y = - 1 x 3 x = 122          and     y = - 3 x = 6          and     y = - 3

So, the co-ordinates of  A  are ( 6, 0 )  and that of  B  are  (0, - 3 ).

 

( ii ) Slope of  AB = - 3 - 00 - 6 = - 3- 6 = 12 Slope of line perpendicular to  AB  = m =- 2P ( 4, - 1 ) Required equation isy - y1 = m ( x - x1 ) y - ( - 1 ) = - 2 ( x - 4 ) y + 1 = - 2 x + 82 x + y = 7.


Advertisement