P(1, -2) is a point on the line segment A(3, -6) and B(x, y) such

The slope of a line joining  P ( 6, k )  and  Q (1- 3k, 3 ) is . Find

(i) k

(ii) Midpoint of  PQ, using the value of  ‘k’  found in  (i).


( i )  Slope of  PQ = 3 - k1 - 3 k - 6 12 = 3 - k- 3 k - 5 - 3 k - 5 = 2 ( 3 - k ) - 3 k - 5 = 6 - 2 k k =  - 11

 

( ii ) Substituting  k  in  p  and  Q,  we get

P ( 6, K ) = P ( 6, - 11 )   and 

Q ( 1 - 3 k, 3 )  =  Q ( 1 - 3 ( - 11 ), 3 )  =  Q ( 1 +  33, 3 )  =  Q ( 34, 3 )

 Midpoint of  PQ =  6 + 342, - 11 + 32                               =  402, - 82                               = ( 20, - 4 )


Calculate the ratio in which the line joining A( - 4, 2) and B(3, 6) is divided by a
point P(x, 3). Also find

(i) x

(ii) Length of AP.


(i) Given points are A(- 4, 2) and B(3, 6)

Let P(x, 3) divides the line joining A(- 4,2) and B(3,6) in the ratio k :1.

Thus, we have

3k - 4k + 1 = x      ...(i)

And 6k + 2k + 1 = 3

 6k + 2 = 3(k + 1)

 6k + 2 = 3k + 3

 3k = 1

 k = 13

By substituting the value of k in equation(i), we have

3 × 13 - 413 + 1 = x

 - 343 = x

 - 94 = x

Thus, coordinates of P are (- 94, 3)

(ii) Now, the distance AP = (- 94 + 4)2 + (3 - 2)2

                                   = (74)2 + 12

                                  = 4916 + 1

                                  = 49 + 1616

                                  = 6516

 AP = 654 units


ABC is a triangle and G(4, 3) is the centroid of the triangle. If A = (1, 3), B = (4, b) and C = (a, 1), find ‘a’ and ‘b’. Find length of side BC.


Given,

The coordinates of the vertices of ABC are A(1, 3), B(4, b) and C(a, 1).

The coordinates of the centroid are G(4, 3).

It is known that A(x1, y1), B(x2, y2) and C(x3, y3) are vertices of a triangle, then

Thus, the coordinates of the centroid of ABC are (x1 + x2 + x33, y1 +y2 + y33)

 the coordinates of the centroid of ABC are (1 + 4 + a3, 3 + b + 13) = (5 + a3, 4 + b3)

But, as given the coordinates of the centroid are G(4, 3).

Thus, we have

5 + a3 = 4            and           4 +b3 = 3

 5 + a =12      and          4 + b = 9

 a = 7             and                 b = 5

Thus, the coordinates of B and C are (4, 5) and (7, 1) respectively.

Using distance formula, we have

BC = (7 - 4)2 + (1 - 5)2 

     = 9 +16

     = 25

     = 5 units.

Thus, the length of BC is 5 units.


Advertisement

P(1, -2) is a point on the line segment A(3, -6) and B(x, y) such that AP : PB is equal to 2 : 3. Find the coordinates of B


                      

Given,  P ( 1, - 2 ),  A ( 3, - 6 )  and  B ( x, y )

 AP : PB  = 2 : 3

Hence, co-ordinates of  P =  ( 2 × x ) + ( 3 x 3 )2 + 3,  ( 2 × y ) + ( 3 ×  - 6  )2 + 3                                            =  2 x + 95, 2 y - 185 

 

But,  the co-ordinates of  P  are  ( 1, - 2 ).

 

 2 x + 95 = 1       and      2 y - 185 = - 2 2 x + 9 = 5         and      2 y - 18 = - 10 2 x = 5 - 9         and       2 y = - 10 + 18    x = - 42           and           y = 82    x = - 2            and           y = 4

Hence,  the  co-ordinates of  B  are  ( - 2, 4 ).


Advertisement

In the figure given below, the line segment AB meets X-axis at A and Y-axis at B. The point P(-3, 4) on AB divides it in the ratio 2:3. Find the coordinates of A and B.


a) Let the coordinates of A and B be (x, 0) and (0, y) respectively.

Given P divides AB is the ratio 2:3,

Using bisection formula, we have

- 3 = 2 × 0 + 3 × x2 + 3         and       4 = 2 × y + 3 × 02 + 3

- 3 =  3x5                      and                 4 = 2y5

- 15 = 3x                      and                 20 = 2y

x =- 5                          and                   y = 10

Thus, the coordinates of A and B are (–5, 0) and (0, 10) respectively.


Advertisement