In the given figure  PQ  is a tangent to the circle at&

In the figure given below, diameter AB and chord CD of a circle meet at P. PT is a tangent to the circle at T. CD = 7.8 cm, PD = 5 cm, PB = 4 cm. Find:

(i) AB.

(ii) the length of tangent PT.


We know that, Product of the lengths of the segments of the chord is equal to the square of the length of the tangent from the point of contact to the point of intersection.

(i) As chord CD and tangent at point T intersect each other at P,

PC  PD = PT2       ...(i)

AB is the diameter and tangent at point T intersect each other at P,

PA × PB = PT2       .(ii)

From (i) and (ii), PC × PD = PA × PB  …(iii)

Given: PD = 5cm, CD = 7.8cm

PA = PB + AB

    = 4 + AB

And, PC = PD + CD

            = 12.8cm

By substituting these values in equation (iii),

12.8 × 5 = (4 + AB) × 4

 4 + AB = 12.8 × 54

 4 + AB = 16

 AB = 12cm

(ii) PC × PD = PT2

 PT = 12.8 × 5

 PT = 8cm

Therefore, the length of tangent is 8cm.


In the figure given below, ABCD is a rectangle. AB = 14 cm, BC = 7 cm.
From the rectangle, a quarter circle BFEC and a semicircle DGE are removed.
Calculate the area of the remaining piece of the rectangle. (Take π = 22/7)


Considering the given figure,

Given dimensions of the rectangle: AB = 14 cm and BC = 7 cm

Therefore, radius of quarter circle = 12πr2

                                                 = 14 × 227 × (7)2

                                                 = 772sq.cm

Now, area of rectangle ABCD = AB × BC = 14 × 7 = 98 sq. cm
Required area = Area of rectangle ABCD - [Area of (BCEF) - Area of (DGE)]
                    = 98 - 772 - 774

                   = 1614

                   = 40.25 sq. cm


AB and CD are two chords of a circle intersecting at P. Prove that .


Construction : As given, we have to join AD and CB

InAPD and CPB

We can write,

A = C       ( Angles are in same segment)

D = B       ( Angles are in same segment)

By AA Postulate,

APD ~ CPB

 APCP = PDPB ( Corrosponding sides of similar triangles)

 AP × PB = CP × PD

Hence proved.


Advertisement

In the given figure  PQ  is a tangent to the circle at  A,  AB  and  AD  are bisectors of  CAQ   and   PAC,    IF  BAQ = 30°, prove that: 

(i) BD is a diameter of the circle

(ii) ABC is an isosceles triangle


             


              

( i )   BAQ = 30°Since  AB  is the bisector of  CAQ CAB  =  BAQ  =  30°AD  is the bisector of  CAP   and   P - A - Q,DAP + CAD + CAQ  =  180° CAD  + CAD  + 60° =  180° CAD = 60°So,   CAD + CAB = 60° + 30° =  90°Since angle in a semi-circle  =  90° Angle made by diameter to any point on the circle is  90°

S0,  BD  is the diameter of the circle.

 

( ii )  Since  BD  is the diameter of the circle, so it will pass through the centre.

By  Alternate segment theorem,

ABD = DAP = 60°So,  in BMA,AMB = 90°         ........ Use Angle Sum Property 

We know that perpendicular drawn from the centre to a chord of a circle bisects the chord.

 BMA = BMC = 90°In BMA  and  BMC,BMA = BMC = 90°BM = BM      ........( Common side )AM = CM     .........( perpendicular drawn from the centre to a chord of a circle bisects the chord. ) BMA    BMC AB = BC  ........( SAS congruence criterion ) ABC  is an isosceles triangle.


Advertisement

In the figure given below, O is the centre of the circle and SP is a tangent. If ∠SRT = 65°, find the value of x, y and z.


In the given figure,

TS  SP,

mTSR = mOSP = 90°

In TSR, mTSR +mTSR + mRTS = 180°

 90° + 65° + x = 180°

x = 180° - 90° - 65°

 x = 25°

Now, y = 2x [Angle subtended at the centre is double that of angle subtended by the arc at the same centre]

y = 2 × 25°

Therefore, y = 50°

In OSP, mOSP + mSPO + mPOS= 180°

z = 180° - 140°

Therefore, z = 40°


Advertisement