The binary operation *: R × R →&nb

If , prove that a + b + c = abc.


tan-1a +tan-1b +tan-1c = π

tan-1b +tan-1c = π - tan-1a

 tan-1b + c1 - bc = π - tan-1a

 b + c1 - bc = tanπ - tan-1a

 b + c1 - bc = - tan tan-1a

 b + c1 - bc = - a

 b + c = - a + abc

 a + b+ c = abc

 


Solve for x, if:

tancos-1x = 25


Given,

tancos-1x = 25

We have, cos-1x = tan-11 - x2x

 tantan-11 - x2 x = 25

 1 - x2x= 25

Squaring on both sides,

1 - x2x = 45

5 - 5x2 = 4x2

 9x2 = 5 x = 53


Advertisement

The binary operation *: R × R  R is defined as a * b = 2a + b Find (2*3)*4.


Given, a * b = 2a + b

 (2*3)*4 = 2 × 2 + 3 * 4

                 = 7 * 4

                 = 2 × 7 + 4

                 = 14 + 4

                 = 18


Advertisement

Solve: 3tan-1x + cot-1x = π


Given equation is, 3tan-1x + cot-1x = π

 2tan-1x + tan-1x + cot-1x = π

 2tan-1x + π2 = π

 2tan-1x = π - π2

 tan-1x = π2 - π4

 x =tanπ2 - π4 

 x = 1


If the function f(x) = 2x - 3 is invertible then find its inverse. Hence prove that (fof- 1)(x) = x 


let, y = 2x - 3

 y2 = 2x - 3

 x = y2 + 32

 f-1(x) = x2 +32

Now, L.H.S. = fof- 1 (x) = ff- 1(x)

                  = 2f- 1(x) - 3

                  = 2x2 +32 - 3

                  = x2

                  = x

   fof- 1(x) = x

Hence proved.


Advertisement