Prove that the medians of an equilateral triangle are equal. fr

ABC is a triangle in which ∠B = 2∠C. D is a point on side BC such that AD bisects ∠BAC and AB = CD. Prove that ∠BAC = 72°.
[Hint. Take a point P on AC such that BP bisects ∠B. Join P and D.]


Construction: Take a point P on AC such that BP bisects ∠B. Join P and D.
Proof: In ∆ABC,
∵ BP bisects ∠ABC


Construction: Take a point P on AC such that BP bisects ∠B. Join P

therefore space angle ABP equals angle PBC equals 1 half angle straight B equals 1 half left parenthesis 2 angle straight C right parenthesis equals angle straight C
In APBC,
∴ ∠PBC = ∠PCB (= ∠C)
∴ PB = PC    ...(2)
| Sides opposite to equal angles of∆PBC In ∆APB and ∆DPC,
AB = CD    | Given
PB = PC    | From (2)
∠ABP = ∠DCP (= ∠C)
∴ ∆APB ≅ ∆DPC    | SAS Axiom
∴ ∠BAP = ∠CDP (= ∠A)    ...(3)
| C.P.C.T.
and    AP = DP    ...(4) | C.P.C.T.
In ∆APD,
∵ AP = DP    | From (4)

therefore space angle PDA equals angle PAD equals fraction numerator angle straight A over denominator 2 end fraction
therefore space angle DPA equals straight pi minus open parentheses fraction numerator angle straight A over denominator 2 end fraction plus fraction numerator angle straight A over denominator 2 end fraction close parentheses equals straight pi minus angle straight A space space space space space space space space space space space space space space space space... left parenthesis 5 right parenthesis

Again from ∆DPC,
∠DPC = π - (∠A + ∠C)
∴ ∠DPA = π - ∠DPC = π - {π - (∠A + ∠C)} = ∠A + ∠C    ...(6)
From (5) and (6),
π - A = ∠A + ∠C ⇒ 2∠A + ∠C = π ...(7)
Again,
∠A + ∠B + ∠C = π
| ∵ The sum of three angles of ∆ABC = π ⇒ ∠A + 2∠C + ∠C = π | ∵ ∠B = 2∠C
⇒    ∠A + 3∠C = π    ...(8)
Multiplying (7) by 3, we get
6∠A + 3∠C = 3π    ...(9)
Subtracting (8) from (9), we get

         space space space space space space space space space space space space space space 5 angle straight A equals 2 straight pi
rightwards double arrow space space space space space space space space space space angle straight A equals fraction numerator 2 straight pi over denominator 5 end fraction equals 2 over 5 cross times 180 degree equals 72 degree
rightwards double arrow space space space space space space space space space space angle BAC equals 72 degree

1214 Views

Two circles are congruent. If the radius of one circle is 3 cm, what is the radius of the other circle?
  • 3 cm 
  • 6 cm
  • 1.5 cm
  • 1.5 cm

A.

3 cm 
127 Views

The symbol for congruence is
  • =
  • ~

  • ° 
  • ° 

D.

° 
181 Views

 In figure, ABCD is a square and ∠DEC is an equilateral triangle. Prove that

(i)     ∆ADE ≅ ∆BCE
(ii)    AE = BE
(iii)   ∠DAE = 15°


Given: ABCD is a square and ∆DEC is an equilateral triangle.

To Prove:

(i)    ∆ADE ≅ ∆BCE

(ii)    AE = BE

(iii)    ∠DAE = 15°

Proof: (i) In ∆ADE and ∆BCE,
   AD = BC

           left enclose table row cell because space ABCD thin space is space straight a space square end cell row cell therefore AB equals BC equals CD equals DA end cell end table end enclose

  DE=CE
    
          left enclose table row cell because space increment EDC space is space equilateral end cell row cell therefore space ED space equals space DC space equals space CE end cell end table end enclose

 angle EDA space equals space angle ECB
space space space space space space space space space space space left enclose table row cell because space increment EDC space is space equilateral end cell row cell therefore angle EDC space equals space angle ECD space left parenthesis equals 60 degree right parenthesis space space space.... left parenthesis 1 right parenthesis end cell row cell because space ABCD space is space straight a space square end cell row cell therefore space angle ADC space equals space angle BCD space equals left parenthesis 90 degree right parenthesis space space.... left parenthesis 2 right parenthesis end cell row cell Adding space left parenthesis 1 right parenthesis space and space left parenthesis 2 right parenthesis comma end cell row cell table row cell angle EDC space plus space angle ADC space equals space angle ECD plus angle BCD end cell row cell rightwards double arrow space angle EDA space equals space angle ECB end cell end table end cell end table end enclose

∴ ∆ADE ≅ ∆BCE | SAS congruence rule
(ii)    ∵ ∆ADE ≅ ∆BCE | Proved in (1)
∴ AE = BE    | CPCT
(iii)    In ∆DAE,
∵ DE = DA    | Given
∴ ∠DAE = ∠DEA    ...(1)
| Angles opposite to equal sides of a triangle are equal Also, ∠ADE + ∠DAE + ∠DEA = 180°
| Angle sum property of a triangle
⇒ (∠ADC + ∠EDC) + ∠DAE + ∠DEA = 180°
⇒ (90° + 60°) + ∠DAE + ∠DEA = 180°
⇒ ∠DAE + ∠DEA = 30°    ...(2)
From (1) and (2),
∠DAE = 15° = ∠DEA

1427 Views

Advertisement

Prove that the medians of an equilateral triangle are equal.


Given: ABC is an equilateral triangle whose medians are AD, BE and CF.
To Prove: AD = BE = CF


Given: ABC is an equilateral triangle whose medians are AD, BE and CF

Proof: In ∆ADC and ∆BEC,

                AC = BC

                      left enclose table row cell space because increment ABC space is space equilateral end cell row cell therefore space AB equals BC equals CA end cell end table end enclose

                angle ACD equals angle BCE

                     left enclose table row cell because increment ABC space is space equilateral end cell row cell therefore angle ABC equals angle BCA end cell row cell equals angle CAB equals 60 degree end cell end table end enclose

space space space space
           
              DE = EC

                  left enclose table row cell because space AD thin space is space straight a space median end cell row cell therefore space DC equals DB equals 1 half BC end cell row cell because space BE space is space straight a space median end cell row cell because space EA space equals space EC equals 1 half AC end cell row cell because space AC equals BC end cell row cell therefore space DC equals EC end cell end table end enclose

therefore space space space space increment ADC equals increment BEC
space space space space space space space space space space space space space space space space space space space space space space space space
                         | SAS congruence rule

therefore           increment AD equals BE              ....(1) | CPCT  

Similarly, we can prove that
BE = CF    ...(2)
and    CF = AD    ...(3)
From (1), (2) and (3)
AD = BE = CF

4736 Views

Advertisement
Advertisement