A class has 30 students. In how many ways can three prizes be aw
Advertisement

A class has 30 students. In how many ways can three prizes be awarded so that:
(a) no students get more than one prize?
(b) a student may get any number of prizes?


(a) Number of ways in which the first prize can be awarded = 30

rightwards double arrow                             m = 30

Number of eligible students for the second prize = 29

∴   Number of ways in which second prize can be awarded = 29

rightwards double arrow                         n = 29

Number of ways in which the third prize can be awarded = 28

rightwards double arrow                        P = 28

∴   By fundamental principle of counting, the total number of ways of awarding the three prizes.

              = straight m cross times straight n cross times straight p space equals space 30 cross times 29 cross times 28 space equals space 24360.

(b) Number of students = 30

Number of ways in which the first prize may be awarded = 30

rightwards double arrow                    m = 30

Number of students eligible for the second prize = 30 (∵ A student may get any number of prizes)

Number of ways in which the second prize can be awarded = 30

rightwards double arrow                             n = 30

Similarly, number of ways in which the third prize can be awarded = 30

rightwards double arrow                            p = 30

By fundamental principle of counting, the number of ways in which the three prizes can be awarded

                               = space space space space space straight m cross times straight n cross times straight p equals 30 cross times 30 cross times 30 equals 27000.

745 Views

Advertisement
Find the number of different signals that can be generated by arranging at least 2 flags in order (one below the other) on a vertical staff, if five different flags are available. 

Total flags = 5

Number of signals generated, using two flags:

                                     

                            = m x n = 5 x 4 = 20                                ...(i)

                                 Or

Number of signals generated, using three flags:

                                       

                                  = m x n x p = 5 x 4 x 3 = 60              ...(ii)

                                              Or

Number of signals generated, using 4 flags:

                                       
                              
                            = m x n x p x q = 5 x 4 x 3 x 2 = 120.

                                          Or
Number of signals generated, using all 5 flags:

                                        
                           
                             = m x n x p x q x r = 5 x 4 x 3 x 2 x 1 = 120
∴    Total number of signals generated
                             = 20 + 60 + 120 +120 = 320.



                  

358 Views

A cinema hall has 3 entrance and 4 exit gates. In how many ways can he enter the hall and leave it at the end of the show?

Solution not provided.

Ans. 12

238 Views

How many 3 digit numbers are there without repetition?

Digits available are: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Total number of digits = 10

Number of digits used = 3

                           

Number of filling box (z) = 9              [∴ If 0 is put in there, it becomes a two digit number]
rightwards double arrow                       m = 9

Number of ways of filling box (y) = 9                        (3  Repetition is not allowed)
rightwards double arrow                     n = 9

Number of ways of filling box (x) = 8                         (3  Repetition is not allowed)
rightwards double arrow                      p = 8

∴ The number of 3 digit numbers or numbers between 100 and 1000
                               = m x n x p = 9 x 9 x 8 = 648     

                                     





204 Views

3 men board a bus in which there are 5 vacant seats. In how many ways can they occupy the seats?

Solution not provided.

Ans. 60

237 Views

Advertisement