Let A= R × R and * be a binary operation on A defined by(a, b)
Advertisement

Let A= R × R and * be a binary operation on A defined by
(a, b) * (c, d) = (a+c, b+d)
Show that * is commutative and associative. Find the identity element for *
on A. Also find the inverse of every element (a, b) ∈ A.


(a, b) * (c, d) = (a + c, b + d)

(i) Commutative
(a, b) * (c, d) = (a+c, b+d)
(c, d) * (a, b) = (c+a, d+b)
for all, a, b, c, d  R
* is commulative on A

(ii) Associative : ______
(a, b), (c, d), (e, f) A
{ (a, b) * (c, d) } * (e, f)
= (a + c, b+d) * (e, f)
= ((a + c) + e, (b + d) + f)
= (a + (c + e), b + (d + f))
= (a*b) * ( c+d, d+f)
= (a*b) {(c, d) * (e, f)}
is associative on A

Let (x, y) be the identity element in A.

then,

(a, b) * (x, y) = (a, b) for all (a,b) ∈ A
(a + x, b+y) = (a, b) for all (a, b) ∈ A
a + x = a, b + y = b for all (a, b) ∈ A
x = 0, y = 0
(0, 0) ∈ A
(0, 0) is the identity element in A.

Let (a, b) be an invertible element of A.
(a, b) * (c, d) = (0, 0) = (c, d) * (a, b)
(a+c, b+d) = (0, 0) = (c+a, d+b)

a + c = 0 b + d = 0
a = - c b = - d
c = - a d = - b

(a, b) is an invertible element of A, in such a case the inverse of (a, b) is (-a, -b).

1283 Views

Advertisement

Let A = Q × Q, where Q is the set of all rational numbers, and * be a binary operation on A defined by (a, b) * (c, d) = (ac, b+ad) for (a, b), (c, d) element of A. Then find
(i) The identify element of * in A.
(ii) Invertible elements of A, and write the inverse of elements (5, 3) and open parentheses 1 half comma space 4 close parentheses.


Let A = Q x Q, where Q is the set of rational numbers.
Given that * is the binary operation on A defined by (a, b) * (c, d) = (ac, b + ad) for 
(a, b), (c, d) ∈ A.
(i)
We need to find the identity element of the operation * in A.
Let (x, y) be the identity element in A.
Thus,
(a, b) * (x, y) = (x, y) * (a, b) = (a, b), for all (a, b) ∈ A
⇒(ax, b + ay) = (a, b)
⇒ ax = a and b + ay =b
⇒ y = 0 and x = 1
Therefore, (1, 0) ∈ A is the identity element in A with respect to the operation *.

(ii) We need to find the invertible elements of A.
Let (p, q) be the inverse of the element (a, b)
Thus,
left parenthesis straight a comma space straight b right parenthesis asterisk times left parenthesis straight p comma space straight q right parenthesis space equals space left parenthesis 1 comma space 0 right parenthesis
rightwards double arrow space left parenthesis ap comma space straight b plus aq right parenthesis space equals left parenthesis 1 comma space 0 right parenthesis
rightwards double arrow space ap space equals space 1 space and space straight b plus aq space equals space 0
rightwards double arrow space straight p space equals 1 over straight a space space and space straight q equals negative straight b over straight a
space space Thus space the space inverse space elements space of space left parenthesis straight a comma space straight b right parenthesis space is space open parentheses 1 over straight a comma space minus straight b over straight a close parentheses
space space Now space let space us space find space the space inverse space of space left parenthesis 5 comma space 3 right parenthesis space and space open parentheses 1 half comma space 4 close parentheses
space Hence comma space inverse space of space left parenthesis 5 comma space 3 right parenthesis space is space open parentheses 1 fifth comma space minus 3 over 5 close parentheses
And space inverse space of space open parentheses 1 half comma space 4 close parentheses space is space open parentheses 2 comma space fraction numerator negative 4 over denominator begin display style 1 half end style end fraction close parentheses space equals space space left parenthesis 2 comma space minus 8 right parenthesis

1348 Views

Let space straight f colon straight W rightwards arrow straight W space be space defined space as
straight f left parenthesis straight n right parenthesis space equals space open curly brackets table row cell straight n minus 1 comma space space if space straight n space is space odd end cell row cell straight n plus 1 comma space if space straight n space is space even end cell end table close curly brackets
Show that f is invertible and find the inverse of f. Here, W is the set of all whole numbers. 

Let f: W→W be defined as
straight f left parenthesis straight n right parenthesis space equals space open curly brackets table row cell straight n minus 1 comma space if space straight n space is space odd end cell row cell straight n plus 1 comma space space if space straight n space is space even end cell end table close curly brackets
We need to prove that 'f' is invertible.
In order to prove that 'f' is invertible it is sufficient to prove that f is a bijection.
A function f: A→B is a one-one function or an injection, if
f(x) = f(y) ⇒ x = y for all x, y ∈ A.
Case i:
If x and y are odd.
Let f(x) = f(y)
⇒x − 1 = y − 1
⇒x = y
Case ii:
If x and y are even,
Let f(x) = f(y)
⇒x + 1 = y + 1
⇒x = y
Thus, in both the cases, we have,
f(x) = f(y) ⇒ x = y for all x, y ∈ W.
Hence f is an injection. 

Let n be an arbitrary element of W.
If n is an odd whole number, there exists an even whole number n − 1 ∈ W such that
f(n − 1) = n − 1 + 1 = n.
If n is an even whole number, then there exists an odd whole number n + 1 ∈ W such that f(n + 1) = n + 1 − 1 = n. Also, f(1) = 0 and f(0) = 1
Thus, every element of W (co-domain) has its pre-image in W (domain).
So f is an onto function.

Thus, it is proved that f is an invertible function.
Thus, a function g: B→A which associates each element y ∈ B to a unique element x ∈ A such that f(x) = y is called the inverse of f.
That is, f(x) = y ⇔ g(y) = x.
The inverse of f is generally denoted by f -1.

Now let us find the inverse of f.
Let x, y ∈ W such that f(x) = y
⇒x + 1 = y, if x is even
And
straight x minus 1 space equals space straight y comma space if space straight x space is space odd
rightwards double arrow space space straight x space equals space open curly brackets table row cell straight y minus 1 comma space if space straight y space is space odd end cell row cell straight y plus 1 comma if space straight y space is space even end cell end table close curly brackets
rightwards double arrow space straight f to the power of negative 1 end exponent left parenthesis straight y right parenthesis space equals open curly brackets table row cell straight y minus 1 comma space if space straight y space is space odd end cell row cell straight y plus 1 comma space if space straight y space straight i space even end cell end table close curly brackets
Interchange comma space straight x space and space straight y comma space we space have comma space
rightwards double arrow straight f to the power of negative 1 end exponent left parenthesis straight x right parenthesis space equals open curly brackets table row cell straight x minus 1 comma space if space straight x space is space odd end cell row cell straight x plus 1 comma space if space straight x space is space even end cell end table close curly brackets
Re space writing space the space above space we space have comma
space space rightwards double arrow straight f to the power of negative 1 end exponent left parenthesis straight x right parenthesis space equals space open curly brackets table row cell straight x plus 1 comma space if space straight x space is space even space end cell row cell straight x minus 1 comma space if space straight x space is space odd end cell end table close curly brackets
Thus comma space straight f to the power of negative 1 end exponent left parenthesis straight x right parenthesis space equals space straight f left parenthesis straight x right parenthesis

579 Views

If straight R equals open curly brackets open parentheses straight x comma space straight y close parentheses colon straight x plus 2 straight y space equals space 8 close curly brackets is a relation on N, write the range of R.


The set of natural numbers, N, = {1, 2, 3, 4, 5, 6.....}
The relation is given as
straight R equals open curly brackets open parentheses straight x comma space straight y close parentheses colon straight x plus 2 straight y equals 8 close curly brackets
Thus comma space straight R space equals open curly brackets left parenthesis 6 comma space 1 right parenthesis comma space left parenthesis 4 comma space 2 right parenthesis comma space left parenthesis 2 comma space 3 right parenthesis close curly brackets
Domain equals space open curly brackets 6 comma space 4 comma space 2 close curly brackets
Range space equals open curly brackets 1 comma space 2 comma space 3 close curly brackets.

271 Views

If the function f: R rightwards arrow R  be given by straight f left parenthesis straight x right parenthesis space equals space straight x squared plus 2 space space and space straight g space colon thin space straight R rightwards arrow space straight R be given by straight g left parenthesis straight x right parenthesis space equals fraction numerator straight x over denominator straight x minus 1 end fraction comma space straight x not equal to 1 comma find fog and gof and hence find fog (2) and gof ( −3).


Given that straight f left parenthesis straight x right parenthesis space equals space straight x squared plus 2 space and space straight g left parenthesis straight x right parenthesis space equals space fraction numerator straight x over denominator straight x minus 1 end fraction
Let us find fog:

space fog space equals space straight f open parentheses straight g left parenthesis straight x right parenthesis close parentheses
rightwards double arrow space space fog space equals space open parentheses straight g left parenthesis straight x right parenthesis close parentheses squared plus 2
rightwards double arrow space fog space equals open parentheses fraction numerator straight x over denominator straight x minus 1 end fraction close parentheses squared plus 2
rightwards double arrow fog space equals fraction numerator straight x squared plus 2 left parenthesis straight x minus 1 right parenthesis squared over denominator left parenthesis straight x minus 1 right parenthesis squared end fraction
rightwards double arrow fog space equals fraction numerator straight x squared plus 2 left parenthesis straight x squared minus 2 straight x plus 1 right parenthesis over denominator straight x squared minus 2 straight x plus 1 end fraction
rightwards double arrow fog space equals fraction numerator 3 straight x squared minus 4 straight x plus 2 over denominator straight x squared minus 2 straight x plus 1 end fraction
Therefore, left parenthesis fog right parenthesis space left parenthesis 2 right parenthesis space equals space fraction numerator 3 cross times 2 squared minus 4 cross times 2 plus 2 over denominator 2 squared minus 2 cross times 2 plus 1 end fraction

rightwards double arrow left parenthesis fog right parenthesis thin space left parenthesis 2 right parenthesis space equals space fraction numerator 12 minus 8 plus 2 over denominator 4 minus 4 plus 1 end fraction space equals 6
Now space let space us space find space gof colon
gof space equals space straight g open parentheses straight f left parenthesis straight x right parenthesis close parentheses
rightwards double arrow space space gof space equals space fraction numerator straight f left parenthesis straight x right parenthesis over denominator straight f left parenthesis straight x right parenthesis minus 1 end fraction
rightwards double arrow gof space equals space fraction numerator straight x squared plus 2 over denominator straight x squared plus 2 minus 1 end fraction
rightwards double arrow space gof space equals fraction numerator straight x squared plus 2 over denominator straight x squared plus 1 end fraction

 Therefore comma space left parenthesis gof right parenthesis thin space left parenthesis negative 3 right parenthesis space equals space fraction numerator left parenthesis negative 3 right parenthesis squared plus 2 over denominator left parenthesis negative 3 right parenthesis squared plus 1 end fraction equals space fraction numerator 9 plus 2 over denominator 9 plus 1 end fraction equals 11 over 10

247 Views

Advertisement