In figure, lines AB and CD intersect at O. If ∠AOC + ∠BOE =
zigya tab
Advertisement

In figure, lines AB and CD intersect at O. If ∠AOC + ∠BOE = 70° and ∠BOD = 40°, find ∠BOE and reflex ∠COE.


∵ Lines AB and CD intersect at O
∴ ∠AOC = ∠BOD
| Vertically Opposite Angles
But ∠BOD = 40°    ...(1) | Given
∴ ∠AOC = 40°    ...(2)
Now, ∠AOC + ∠BOE = 70°
⇒ 40° + ∠BOE = 70° | Using (2)
⇒ ∠BOE = 70° - 40°
⇒ ∠BOE = 30°
Again,
Reflex ∠COE
= ∠COD + ∠BOD + ∠BOE
= ∠COD + 40° + 30°
| Using (1) and (2)
= 180° + 40° + 30°
| ∵ Ray OA stands on line CD
|∴ ∠AOC + ∠AOD = 180° (Linear Pair Axiom) ⇒ ∠COD = 180°
= 250°.

1248 Views

Advertisement
In figure, if x + y = w + z, then prove that AOB is a line.


x + y = w + z    ...(1) | Given
∵ The sum of all the angles round a point is equal to 360°.
therefore x + y + w + z = 3600  
rightwards double arrow x + y + x + y = 3600                       | Using (1)
rightwards double arrow   2(x + y) = 3600

rightwards double arrow space space space space space space space space space space space space space straight x plus straight y equals fraction numerator 360 degree over denominator 2 end fraction
rightwards double arrow           x + y = 1800

∴ AOB is a line.

| If the sum of two adjacent angles is 180°, then the non-common arms of the angles form a line.



    

512 Views

In figure, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray lying between rays OP and OR. Prove that  
angle ROS equals 1 half left parenthesis angle QOS minus angle POS right parenthesis


∵ Ray OR is perpendicular to line PQ.
∴ ∠QOR = ∠POR = 90°    ...(1)
∠QOS = ∠QOR + ∠ROS    ...(2)
∠POS = ∠POR - ∠ROS    ...(3)
From (2) and (3),
∴ ∠QOS - ∠POS = (∠QOR - ∠POR) + 2∠ROS = 2∠ROS | Using (1)

rightwards double arrow space angle ROS equals 1 half left parenthesis angle QOS minus angle POS right parenthesis

615 Views

In figure, lines XY and MN intersect at O. If ∠POY = 90° and a : b = 2 : 3, find c.

because space spaceRay OP stands on  line Xy

therefore    angle POX plus angle POY equals 180 degree
                             | Liner Pair Axiom

rightwards double arrow space space space space space angle POX space plus space 90 degree space equals space 180 degree
space space space space space space space space space space space space space space space space space space space space space space space space space space vertical line space because space angle POY equals 90 degree space left parenthesis Given right parenthesis
rightwards double arrow space space space space space space angle POX equals 180 degree minus 90 degree
rightwards double arrow space space space space space space space space angle POX equals 90 degree
rightwards double arrow space space space angle POM plus angle XOM equals 90 degree

rightwards double arrow            a + b = 900                        .....(1)

                 a : 2 = 2 : 3 

rightwards double arrow            straight a over straight b equals 2 over 3

rightwards double arrow             straight a over 2 equals b over 3 equals k left parenthesis s a y right parenthesis

rightwards double arrow              a = 2k
                   b = 3k

Putting the values of a and b in (1), we get

           2k + 3k = 90
open table attributes columnalign right end attributes row cell therefore space space space space space space straight a equals 2 straight k equals 2 left parenthesis 18 degree right parenthesis equals 36 degree end cell row cell b equals 3 k equals 3 left parenthesis 18 degree right parenthesis equals 54 degree end cell end table close curly brackets space space space space space space space space space space space space space space.... left parenthesis 2 right parenthesis

∵ Ray OX stands on line MN
∴ ∠XOM + ∠XON = 180°
| Linear Pair Axiom
⇒    b + c = 180°
⇒    54° + c = 180° | Using (2)
⇒    c = 180° - 54°
⇒    c = 126°.




747 Views

In figure, ∠PQR = ∠PRQ, then prove that ∠PQS = ∠PRT.


∵ Ray QP stands on line ST
∴ ∠PQS + ∠PQR = 180°    ...(1)
| Linear Pair Axiom
∵ Ray RP stands on line ST
∴ ∠PRQ + ∠PRT = 180°    ...(2)
| Linear Pair Axiom
From (1) and (2), we obtain
∠PQS + ∠PQR = ∠PRQ + ∠PRT
⇒    ∠PQS = ∠PRT.
| ∵ ∠PQR = ∠PRQ (Given)

465 Views

Advertisement