CBSE
Gujarat Board
Haryana Board
Class 10
Class 12
yx
xy
x2y2
y2x2
A.
Given, cos-1x2 - y2x2 + y2 = kx2 - y2x2 + y2 = coskOn differentiating w.r.t. x, we getx2 + y22x - 2ydydx - x2 - y22x + 2ydydx x2 + y22 = 0⇒ - 4x2ydydx + 4xy2 = 0⇒ dydx = yx
limx→01 + 1 + x2 - 2x - 8 = ?
32
14
124
112
C.
limx→01 + 1 + x2 - 2x - 8 × 1 + 1 + x2 + 21 + 1 + x2 + 2= limx→01 + 1 + x - 41 + 1 + x + 2x - 8= limx→01 + 1 + x - 41 + 1 + x + 2x - 8 × 1 + x + 31 + x + 3= limx→01 + x - 91 + x + 31 + 1 + x + 2x - 8= limx→011 + x + 31 + 1 + x + 2= 11 + 8 + 31 + 1 + 8 + 2= 13 + 32 + 2 = 124
The quadratic equation whose roots are l and m,where l = limθ → 0 3sinθ - 4sin2θθ,m = limθ → 0 2tanθθ 1 - tan2θ is
x2 + 5x + 6
x2 - 5x + 6
x2 - 5x - 6
x2 + 5x - 6
B.
We have,l = limθ→03sinθ - 4sin2θθUsing L-hospital rule = limθ→0 3cosθ - 8sinθcosθ1 = 3and m = limθ→02tanθ1 -tan2θ = limθ→0 tan2θθ = limθ→0 tan2θ2θ = 2The required quadratic equation is⇒ x2 - l + mx +lm = 0⇒ x2 - 3 + 2x + 3 . 2 = 0 x2 - 5x + 6 = 0