Prove that the function f(x) = 5 x – 3 is continuous at x = 0,
zigya tab
Examine the continuity of the function f(x) = 2x2 –1 at.x = 3

Here
      straight f left parenthesis straight x right parenthesis equals 2 straight x squared minus 1
Lt with straight x rightwards arrow 3 below space straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 3 below space left parenthesis 2 straight x squared minus 1 right parenthesis equals 2 left parenthesis 3 right parenthesis squared minus 1
equals 2 left parenthesis 9 right parenthesis minus 1 equals 18 minus 1 equals 17
Now space straight f space is space defined space at space straight x equals 3
and space space space space straight f left parenthesis straight x right parenthesis equals 2 left parenthesis 3 right parenthesis squared minus 1 equals 2 left parenthesis 9 right parenthesis minus 1 equals 18 minus 1 equals 17
therefore Lt with straight x rightwards arrow 3 below space space space straight f left parenthesis straight x right parenthesis equals straight f left parenthesis 3 right parenthesis equals 17
therefore space straight f space is space continous space at space straight x equals 3.

137 Views

Examine the following functions for continuity :
f(x)=x-5

Here f(x) = x – 5
Function f is defined for all real numbers.
Let c be any real number.
∴ f(c) = c – 5
Also space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow straight c below left parenthesis straight x minus 5 right parenthesis equals straight c minus 5
therefore space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis straight c right parenthesis
∴ f is continuous at x = c
But c is any real number.
∴ f is continuous at every real number.

117 Views

Advertisement

Prove that the function f(x) = 5 x – 3 is continuous at x = 0, at x  = – 3 and at x = 5.


Here space straight f left parenthesis straight x right parenthesis equals 5 straight x minus 3
left parenthesis straight i right parenthesis space Lt with straight x rightwards arrow 0 below space straight f left parenthesis straight x right parenthesis equals stack space Lt with straight x rightwards arrow 0 below space left parenthesis 5 straight x minus 3 right parenthesis equals 5 left parenthesis 0 right parenthesis minus 3 equals 0 minus 3 equals negative 3
Now space space straight f space is space defined space at space straight x equals 0
and space space straight f left parenthesis 0 right parenthesis equals 5 left parenthesis 0 right parenthesis minus 3 equals 0 minus 3 equals negative 3
therefore space Lt with straight x rightwards arrow 0 below space straight f left parenthesis straight x right parenthesis equals space straight f left parenthesis 0 right parenthesis equals negative 3
therefore space straight f space is space continous space at space straight x equals 0.

left parenthesis ii right parenthesis space stack Lt space with straight x rightwards arrow negative 3 below space straight f left parenthesis straight x right parenthesis equals stack space Lt with straight x rightwards arrow negative 3 below space left parenthesis 5 straight x minus 3 right parenthesis equals 5 left parenthesis negative 3 right parenthesis minus 3 equals negative 15 minus 3 equals negative 18
Now space straight f space is space defined space at space straight x equals negative 3
and space space straight f left parenthesis negative 3 right parenthesis equals 5 left parenthesis negative 3 right parenthesis minus 3 equals negative 15 minus 3 equals negative 18
therefore stack space Lt space with straight x rightwards arrow negative 3 below space straight f left parenthesis straight x right parenthesis equals straight f left parenthesis negative 3 right parenthesis equals negative 18
therefore space straight f space is space continous space at space straight x equals negative 3.

left parenthesis iii right parenthesis stack space Lt space with straight x rightwards arrow 5 below straight f left parenthesis straight x right parenthesis equals stack space Lt with straight x rightwards arrow 5 below space left parenthesis 5 straight x minus 3 right parenthesis equals 5 left parenthesis 5 right parenthesis minus 3 equals 25 minus 3 equals 22
Now space straight f space is space defined space at space straight x equals 5
and space space straight f left parenthesis 5 right parenthesis equals 5 left parenthesis 5 right parenthesis minus 3 equals 25 minus 3 equals 22
therefore Lt with straight x rightwards arrow 5 below space straight f left parenthesis straight x right parenthesis equals straight f left parenthesis 5 right parenthesis equals 22
therefore straight f space is space continous space at space straight x equals 5.
424 Views

Advertisement
Prove that the function f(x) = xn is continuous at x = n, where n is a positive integer.

Syntax error from line 1 column 421 to line 1 column 428.
132 Views

Examine the following functions for continuity :
straight f left parenthesis straight x right parenthesis equals fraction numerator 1 over denominator straight x minus 5 end fraction

Here space straight f left parenthesis straight x right parenthesis equals fraction numerator 1 over denominator straight x minus 5 end fraction
For f to be defined,
x – 5 ≠ 0 i.e. x ≠ 5
∴Df = Set of real number except 5 = R - { 5}
Let c ≠ 5 be any real number.
Also space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis minus Lt with straight x rightwards arrow straight c below open parentheses fraction numerator 1 over denominator straight x minus 5 end fraction close parentheses equals fraction numerator 1 over denominator straight c minus 5 end fraction
therefore space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis straight c right parenthesis
∴ f is continuous at x = c.
But c ≠ 5 is any real number
∴ f is continuous at every real number c ∈ D
∴ f is continuous function.
120 Views

Advertisement