Let P (-2, 3, -4) is a point in space. Find the co-ordinates of
Advertisement

Let P (-2, 3, -4) is a point in space. Find the co-ordinates of the foot of perpendicular from this point to ZX-plane.


For ZX - plane, y = 0, so the co-ordinates of the required point are (-2, 0, - 4).
514 Views

Advertisement
Let P (-2, 3, -4) is a point in space. Find the foot of perpendicular from this point to the z-axis.

For z-axis, x = 0, y = 0, so the co-ordinates of the foot of perpendicular are (0,0,-4).
357 Views

Let P (-2, 3, -4) is a point in space. Find the the perpendicular distance of P from XY-plane.

The perpendicular distance of P (-2, 3, - 4) from XY-plane = | z | = | - 4 | = 4
259 Views

Name the octants in which the following points lie:
A (2, 3, 4), B (6, -3, 3), C (2, -1, -6), D (2, 2, -3), E (-1, 3, -6), F (-1, 3, 3), G (-3, -2,5) and H (-1,-2,-5).


A(2, 3, 4) : x>0, y>0, z>0
The point is in octant XOYZ or I
B(6, -3, 3): x>0, y<0, z>0
The point is in octant XOY'Z or IV
C(2, -1, -6) : octant XOY'Z' or VIII
D(2, 2, -3) : octant XOYZ' or V
E(-1, 3, -6): octant X'OYZ' or VI
F(-1, 3, 3): octant X'OYZ or II
G(-3, -2, 5): octant X'OY'Z' or III
H(-1, -2, -5): octant X'OY'Z or VII

368 Views

Find the perpendicular distance of:
(i) A (2, -3, 4) from XY-plane
(ii) B (4, -3, 1) from ZX-plane
(iii) C (3, -2, -1) from YZ-plane


(i) Distance of P(a, b, c) from XY-plane = open vertical bar straight c close vertical bar
∴ Distance of A(2, -3, 4) from XY - plane = open vertical bar 4 close vertical bar space equals space 4

(ii) Distance of P(a, b, c) from ZX-plane = open vertical bar straight b close vertical bar
∴  Distance of B(4, -3, 1) from ZX-plance = open vertical bar negative 3 close vertical bar space equals space 3

(iii) Distance of P(a, b, c) from YZ-plane = space open vertical bar straight a close vertical bar
∴ Distance of C (3, -2, -1) from YZ-plane = open vertical bar 3 close vertical bar equals 3

236 Views

Advertisement