Find the 60th term of the AP 8, 10,12, ..., if it has a total of

If the mth term of an A. P. is 1 over straight n and nth term is 1 over straight m then show that its (mn)th term is 1. 


Let x and d be the first term and common difference respectively of the AP, respectively.
Then,
straight m to the power of th space term space equals space 1 over straight n
rightwards double arrow space straight x plus left parenthesis straight n minus 1 right parenthesis straight d space equals space 1 over straight n
straight x space equals 1 over straight n minus left parenthesis straight m minus 1 right parenthesis straight d space.... space left parenthesis 1 right parenthesis
straight n to the power of th space term space equals 1 over straight m
rightwards double arrow straight x space plus left parenthesis straight n minus 1 right parenthesis straight d space equals space 1 over straight m
rightwards double arrow space 1 over straight n space minus space left parenthesis straight m minus 1 right parenthesis straight d space plus left parenthesis straight n minus 1 right parenthesis straight d space equals space 1 over straight m space left parenthesis from space equ space 1 right parenthesis
rightwards double arrow straight d space left parenthesis straight n minus 1 minus straight m plus 1 right parenthesis space equals space 1 over straight m minus 1 over straight n
rightwards double arrow space straight d left parenthesis straight n minus straight m right parenthesis space equals space fraction numerator straight n minus straight m over denominator nm end fraction
space rightwards double arrow space straight d space equals 1 over mn
Putting space value space of space straight d space in space equation space left parenthesis 1 right parenthesis comma space we space have
straight x space equals space 1 over straight n space minus left parenthesis straight m minus 1 right parenthesis 1 over mn
space equals space 1 over straight n minus straight m over mn space plus 1 over mn
therefore space straight t subscript mn space equals straight a space plus space left parenthesis mn minus 1 right parenthesis straight d space equals space 1 over mn space plus space left parenthesis mn minus 1 right parenthesis 1 over mn space equals space 1

2824 Views

The ratio of the sums of the first m and first n terms of an A. P. is m2: n2. Show that the ratio of its mth and nth terms is (2m−1):(2n−1). 


Let Sm and Sn be the sum of the first m and first n terms of the A.P. respectively. Let, a be the first terms and d be a common difference.

straight S subscript straight m over straight S subscript straight n space equals straight m squared over straight n squared
rightwards double arrow space fraction numerator begin display style straight m over 2 open square brackets 2 straight a plus left parenthesis straight m minus 1 right parenthesis straight d close square brackets end style over denominator begin display style straight n over 2 open square brackets 2 straight a plus left parenthesis straight n minus 1 right parenthesis straight d close square brackets end style end fraction space equals space straight m squared over straight n squared
rightwards double arrow space fraction numerator 2 straight a space plus left parenthesis straight m minus 1 right parenthesis straight d over denominator 2 straight a left parenthesis straight n minus 1 right parenthesis straight d end fraction space equals space straight m over straight n

⇒[2a+(m−1)d]
n =[2a(n−1)d]m
⇒2an+mnd−nd=2am+mnd−md
⇒md−nd=2am−2an
⇒(m−n)d=2a(m−n)
⇒d=2a
Now, the ratio of its mth and nth terms is
straight a subscript straight m over straight a subscript straight n space equals space fraction numerator straight a space plus left parenthesis straight m minus 1 right parenthesis straight d over denominator straight a plus left parenthesis straight n minus 1 right parenthesis straight d end fraction space equals space space fraction numerator begin display style straight a space plus left parenthesis straight m minus 1 right parenthesis 2 straight a end style over denominator begin display style straight a plus left parenthesis straight n minus 1 right parenthesis 2 straight a end style end fraction
space equals space fraction numerator straight a space left parenthesis 1 plus 2 straight m minus 2 right parenthesis over denominator straight a left parenthesis 1 plus 2 straight n minus 2 right parenthesis end fraction
space equals space fraction numerator 2 straight m minus 1 over denominator 2 straight n minus 1 end fraction

Thus, the ratio of its mth and nth terms is 2m – 1 : 2n – 1.

2779 Views

Advertisement

Find the 60th term of the AP 8, 10,12, ..., if it has a total of 60 terms and hence find the sum of its last 10 terms.


The given AP is 8, 10, 12, ....

So,

First term =a = 8

Common difference = d = 10-8 =2

We know that nth term of an AP, an = a + (n - 1)

60th term of the given AP = a60 = 8 +( 60-1) x  2 = 8 + 59 x 2 = 8 + 118 = 126

Therefore, the 60th term of the given AP is 126

It is given that the AP has a total of 60 terms. So, in order to find sum of last n terms. we take

First term, A = 126
Common difference, D = -2
Now,
Sum space of space straight n space term space of space AP space from space the space end space equals space straight n over 2 left square bracket 2 straight A space plus left parenthesis straight n space minus space 1 right parenthesis space straight D right square bracket
therefore space Sum space of space last space 10 space terms space of space the space given space AP

equals space 10 over 2 left square bracket space 2 space straight x space 126 space plus space left parenthesis 10 space minus space 1 space right parenthesis space straight x space left parenthesis negative 2 right parenthesis right square bracket

equals space 5 space left square bracket 252 space plus 9 space straight x space left parenthesis negative 2 right parenthesis right square bracket

equals space 2 space left parenthesis 252 space minus 18 right parenthesis

equals space 5 space straight x space 234

equals space 1170

hence space comma space the space sum space of space last space 10 space terms space of space the space given space AP space is space 1170

1384 Views

Advertisement

The sum of first n terms of an AP is 3n2 + 4n. Find the 25th term of this AP.



The sum of four consecutive numbers in an AP is 32 and the ratio of the product of the first and the last term to the product of two middle terms is 7 : 15. Find the numbers.


Let the numbers be (a -3d),(a-d), (a+d) and (a+3d)

∴ (a-3d) + (a-d) +(a+ d) + (a +3d) = 32

⇒ 4a = 32

a = 8

Also, (a-3d)(a+ 3d)(a-d)(a+d) =715 15a2 -135d2 = 7a2 -7d2 8a2 = 128d2d2 = 8a2128 = 8 x 8x8128d2 =4d =±2

If d =2 numbers are : 2, 6,10, 14
If d = -2 numers are 14,10,16,2


Advertisement