A random variable X takes the values 0, 1 and 2. If P(X = 1) = P(

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

Advertisement

81.

A random variable X takes the values 0, 1 and 2. If P(X = 1) = P(X = 2) and P(X = 0) = 0.4, then the mean of the random variable X is

  • 0.2

  • 0.7

  • 0.5

  • 0.9


D.

0.9

We have, PX = 1 = PX = 2        ...iλ1!eλ = λ22!eλ  λ = 2Also, PX = 0 + PX = 1 + PX = 2 = 1 0.4 + PX = 1 +PX = 2 = 1 PX = 1 +PX = 2 = 0.6 = 610 = 35   from Eq.(i)Also, PX = 1 = 310 PX = 1 = PX = 2 = 310Mean X0PX = 0 + X1PX = 1 + X2PX = 2                    = 0 + 0 . 310 + 2 . 310 = 910 = 0.9


Advertisement
82.

The acute angle between the two lines whose direction ratios are given by l + m - n = 0 and  l2 + m2 + n2 = 0, is

  • 0

  • π6

  • π4

  • π3


83.

The direction ratios of normal to the plane passing through (0, 0, 1), (0, 1, 2) and (1, 0, 3) are

  • (2, 1, - 1)

  • (1, 0, 1)

  • (0, 0, - 1)

  • (1, 0, 0)


84.

If P = (0, 1, 0), Q = (0, 1, 0), then the projection of PQ on the plane x + y + z = 3 is

  • 2

  • 2

  • 3

  • 3


Advertisement
85.

In the space the equation by + cz + d = 0 represents a plane perpendicular to the

  • YOZ-plane

  • ZOX-plane

  • XOY-plane

  • None of these


86.

A plane x passes through the point (1, 1, 1). If b, c, a are the direction ratios of a normal to the plane, where a, b, c (a < b < c) are the factors of 2001, then the equation of plane is 

  • 29x + 31y + 3z = 63

  • 23x + 29y - 29z = 23

  • 23x + 29y + 3z = 55

  • 31x + 37y + 3z = 71


87.

If the plane 7x + 11y + 13z = 3003 meets the co-ordinate axes in A, B, C, then the centroid of the ABC is

  • (143, 91, 77)

  • (143, 77, 91)

  • (91, 143, 77)

  • (143, 66, 91)


88.

dx1 - cosx  - sinx is equal to

  • log1 + cotx2 + c

  • log1 -  tanx2 + c

  • log1 - cotx2 + c

  • log1 + tanx2 + c


Advertisement
89.

dx7 + 5cosx is equal to

  • 13tan-113tanx2 + c

  • 16tan-116tanx2 + c

  • 17tan-1tanx2 + c

  • 14tan -1tanx2 + c


90.

3xdx9x - 1 is equal to

  • 1log3log3x + 9x - 1 + c

  • 1log3log3x - 9x - 1 + c

  • 1log9log3x + 9x - 1 + c

  • 1log3log9x + 9x - 1 + c


Advertisement