If the vector a = 2i^ + 3j^ + 

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

Advertisement

61.

If the vector a = 2i^ + 3j^ + 6k^ and b are collinear and b = 21, then b is equal to

  • ± 2i^ + 3j^ + 6k^

  • ± 32i^ + 3j^ + 6k^

  • i^ + j^ + k^

  • ± 212i^ + 3j^ + 6k^


B.

± 32i^ + 3j^ + 6k^

Given that,a = 2i^ + 3j^ + 6k^and b = 21Now, taking option (b)Let b = ± 32i^ + 3j^ + 6k^b = ± 3a a and b are collinear and magnitude of b is 21.Hence, option (b) ± 32i^ + 3j^ + 6k^ is correct.


Advertisement
62.

If a and b are unit vectors, then the vector (a + b) x (a x b) is parallel to the vector

  • a - b

  • a + b

  • 2a - b

  • 2a + b


63.

I. Two non-zero, non-collinear vectors arelinearly independent.

II. Any three coplanar vectors are linearlydependent.Which ofthe above statements is/are true?

  • Only I

  • Only II

  • Both I and II

  • Neither I nor II


64.

Observe the following statements

A. Three vectors are coplanar if one of them is expressible as a linear combination of the other two.

R. Any three coplanar vectors are linearly dependent.Then, which of the following is true ?

  • Both A and R are true and R is the correct explainaton of A

  • Both A and R are true but R is not the correct explainaton of A

  • A is true, but R is false

  • A is false, but R is true


Advertisement
65.

If the range of a random variable X is {0, 1, 2, 3, 4.....} with P(X = k) = k + 1a3k , fork  > 0, then a is equal to

  • 23

  • 49

  • 827

  • 1681


66.

For a binomial variate X with n = 6, if P(X = 2) = 9 P(X = 4), then its variance is

  • 89

  • 14

  • 98

  • 4


67.

The direction cosines of the line passing through P(2, 3, - 1) and the origin are

  • 214, 314, 114

  • 214, - 314, 114

  • - 214, - 314, 114

  •  214, - 314, - 114


68.

If sinxcosx1 + cosxdx = f(x) + c, then f(x) is equal to

  • log1 + cosxcosx

  • logcosx1 + cosx

  • logsinx1 + sinx

  • log1 + sinxsinx


Advertisement
69.

x49tan-1x501 + x100dx = ktan-1x502 +c, then k is equal to

  • 150

  • - 150

  • 1100

  • - 1100


70.

0π2200sinx + 100cosxsinx + cosxdx is equal to

  • 50π

  • 25π

  • 75π

  • 150π


Advertisement