If is
y + 1x - 1
x - 1y - 1
x - 1y + 1
A.
y - 1x + 1
Given, sec-11 + x1 - y = a⇒ 1 + x1 - y = seca⇒ 1 + x = 1 - yseca⇒ yseca = seca - 1 - x⇒ dydxseca = - 1⇒ dydx = - 1seca = - 11 + x1 - y⇒ dydx = - 1 - y1 + x⇒ dydx = y - 1x + 1
If y = cos23x2 - sin23x2, then d2ydx2 is
- 31 - y2
9y
- 9y
31 - y2
The point on the curve y2 = x the tangent at which makes an angle 45° with X-axis ts
14, 12
12, 14
12, - 12
12, 12
The length of the subtangent to the curve x2y2 = a4 at (- a, a)
a2
2a
a
a3
If a = 2i^ + 3j^ - k^, b = i^ + 2j^ - 5k^, c = 3i^ + 5j^ - k^, then a vector perpendicular to a and in the plane containing b and c is
- 17i^ + 21j^ - k^
17i^ + 21j^ - 123k^
- 17i^ - 21j^ + 97k^
- 17i^ - 21j^ -97 k^
OA and BO are two vectors of magnitudes 5 and 6 respectively. If ∠BOA = 60°, then OA · OB is equal to
0
15
- 15
153
A vector perpendicularto the plane containing the points A (1, - 1, 2), B(2, 0, - 1), C(0, 2, 1) is
4i^ + 8j^ - 4k^
8i^ + 4j^ + 4k^
3i^ + j^ + 2k^
i^ + j^ - k^
If a and b are vectors such that a + b = a - b, then the angle between a and b is
120°
60°
90°
30°
The value of the integral ∫0π2sin100x - cos100xdx is
1100
100!100100
π100
If k∫01x . f3xdx = ∫03t . ftdt, then the value of k is
9
3
19
13