x2 + y2 - 8x + 40 = 05x2&

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

Advertisement

11.

  • - 8, 152

  • 8, - 152

  • - 8, - 152


C.

8, - 152

Let Px1, y1 be the point from which the tangents are drawn to the circlesS1 = x2 + y2 - 8x + 40 = 0S2 = 5x2 + 5y2 -25x + 80 = 0S3 = x2 + y2 - 8x + 16y + 160 = 0Since, the length of the tangent from P to the circles S1, S2, S3 are equal S1 = S2 = S3  S1 = S2 = S3x12 + y12 - 8x1 + 40 = 5x12 + 5x22 - 25x1 + 80                                      = x12 +  y12 - 8x1 + 16y1 +160 = 0     . . . iTakin first and second part of above relation i, we get- 40 + 16y1 + 160 = 016y1 + 120 = 0y1 = - 12016  - 152Taking first and second part of the relation i- 3x1 + 24 = 0x1 = 243  x1 = 8Hence, the point P is 8, - 152


Advertisement
12.

The equation of the circle concentric with the circle x2 + y2 - 6x + 12y + 15 = 0 and of double its area is

  • x2 + y2 - 6x +12y - 15 = 0

  • x2 + y2 - 6x +12y - 30 = 0

  • x2 + y2 - 6x +12y - 25 = 0

  • x2 + y2 - 6x +12y - 20 = 0


13.

If the circle x2 + y2 + 2x + 3y + 1 = 0 cuts another circle x2 + y+ 4x + 3y + 2 = 0 in A and B, then the equation of the circle with AB as a diameter is

  • x2 + y2  + x + 3y + 1 = 0

  • 2x2 + 2y2  + 2x + 6y + 1 = 0

  • x2 + y2  + x + 6y + 1 = 0

  • 2x2 + 2y2  + x + 3y + 1 = 0


14.

The equation of the hyperbola which passes through the point (2, 3) and has the asymptotes 4x + 3y - 7 = 0 and x - 2y - 1 = 0 is

  • 4x2 + 5xy - 6y2 - 11x + 11y + 50 = 0

  • 4x2 + 5xy - 6y2 - 11x + 11y - 43 = 0

  • 4x2 - 5xy - 6y2 - 11x + 11y + 57 = 0

  • x2 - 5xy - y2 - 11x + 11y - 43 = 0


Advertisement
15.

The product of the perpendicular distances from any point on the hyperbola x2a2 - y2b2 = 1 to its asymtotes is

  • a2b2a2 - b2

  • a2b2a2 + b2

  • a2 + b2a2b2

  • a2 - b2a2b2


16.

If the lines 2x + 3y +12 = 0, x - yy + k = 0 are conjugate with respect to the parabola y2 = 8x, then k is equal to

  • 10

  • 72

  • - 12

  • - 2


17.

Find the equation to the parabola, whose axis parallel to they-axis and which passes through the points (0, 4), (1, 9) and (4, 5) is

  • y = - x+ x + 4

  • y = - x+ x + 1

  • y = - 1912x2 + 7912x + 4

  • y = - 1912x2 + 8912x + 4


18.

If ∝, ß, y are the roots of the equation x3 - 6x2 + 11x - 6 = 0 and if a = ∝2 + ß2 + γ2, b = ∝ß + ßγ + γ∝ and  c = (∝ + ß)(ß + γ)(γ + ∝), then the correct inequality among the following is

  • a < b < c

  • b < a < c

  • b < c < a

  • c < a < b


Advertisement
19.

A plane meets the coordinate axes at A, B, C so that the centroid of the triangle ABC is (1, 2, 4). Then, the equation of the plane is

  • x + 2y +4z =12

  • 4x + 2y + z = 12

  • x + 2y + 4z = 3

  • 4x + 2y + z = 3


20.

If (2, 3, - 3) is one end of a diameter of the sphere x2 + y+ z- 6x - 12y - 2z + 20 = 0, then the other end of the diameter is

  • (4, 9, - 1)

  • (4, 9, 5)

  • (- 8, - 15, 1)

  • (8, 15, 5)


Advertisement